24 research outputs found

    PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    Get PDF
    Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 mu m. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans)

    Using Front-Face Fluorescence Spectroscopy and Biochemical Analysis of Honey to Assess a Marker for the Level of Varroa destructor Infestation of Honey Bee (Apis mellifera) Colonies

    Get PDF
    Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samplesā€™ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee coloniesā€™ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the coloniesā€™ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries. Ā© 2023 by the authors
    corecore