23 research outputs found

    Universal lineshape of the Kondo zero-bias anomaly in a quantum dot

    Full text link
    Encouraged by the recent real-time renormalization group results we carried out a detailed analysis of the nonequilibrium Kondo conductance observed in an InAs nanowire-based quantum dot and found them to be in excellent agreement. We show that in a wide range of bias the Kondo conductance zero-bias anomaly is scaled by the Kondo temperature to a universal lineshape predicted by the numerical study. The lineshape can be approximated by a phenomenological expression of a single argument eVsd=kBTKeV_{sd}=k_{\rm B}T_{\rm K}. The knowledge of an analytical expression for the lineshape provides an alternative way for estimation of the Kondo temperature in a real experiment, with no need for time consuming temperature dependence measurements of the linear conductance.Comment: 5 pages, 3 figure

    Wide-band current preamplifier for conductance measurements with large input capacitance

    Full text link
    A wide-band current preamplifier based on a composite operational amplifier is proposed. It has been shown that the bandwidth of the preamplifier can be significantly increased by enhancing the effective open-loop gain of the composite preamplifier. The described preamplifier with current gain 107^7 V/A showed the bandwidth of about 100 kHz with 1 nF input shunt capacitance. The current noise of the amplifier was measured to be about 46 fA/Hz\sqrt{\rm Hz} at 1 kHz, close to the design noise minimum. The voltage noise was found to be about 2.9 nV/Hz\sqrt{\rm Hz} at 1 kHz, which is in a good agreement with the value expected for the operational amplifier used in the input stage. By analysing the total noise produced by the preamplifier we found the optimal frequency range suitable for the fast lock-in measurements to be from 1 kHz to 2 kHz. To get the same signal-to-noise ratio, the reported preamplifier requires roughly 10% of the integration time used in measurements made with a conventional preamplifier.Comment: 5 pages, 4 figure

    Thermopower in hBN/graphene/hBN superlattices

    Full text link
    Thermoelectric effects are highly sensitive to the asymmetry in the density of states around the Fermi energy and can be exploited as probes of the electronic structure. We experimentally study thermopower in high-quality monolayer graphene, within heterostructures consisting of complete hBN encapsulation and 1D edge contacts, where the graphene and hBN lattices are aligned. When graphene is aligned to one of the hBN layers, we demonstrate the presence of additional sign reversals in the thermopower as a function of carrier density, directly evidencing the presence of the moir\'e superlattice. We show that the temperature dependence of the thermopower enables the assessment of the role of built-in strain variation and van Hove singularities and hints at the presence of Umklapp electron-electron scattering processes. As the thermopower peaks around the neutrality point, this allows to probe the energy spectrum degeneracy. Further, when graphene is double-aligned with the top and bottom hBN crystals, the thermopower exhibits features evidencing multiple cloned Dirac points caused by the differential super-moir\'e lattice. For both cases we evaluate how well the thermopower agrees with Mott's equation. Finally, we show the same superlattice device can exhibit a temperature-driven thermopower reversal from positive to negative and vice versa, by controlling the carrier density. The study of thermopower provides an alternative approach to study the electronic structure of 2D superlattices, whilst offering opportunities to engineer the thermoelectric response on these heterostructures.Comment: 9 pages, 3 figure

    Spin-1/2 Kondo effect in an InAs nanowire quantum dot: the Unitary limit, conductance scaling and Zeeman splitting

    Get PDF
    We report on a comprehensive study of spin-1/2 Kondo effect in a strongly-coupled quantum dot realized in a high-quality InAs nanowire. The nanowire quantum dot is relatively symmetrically coupled to its two leads, so the Kondo effect reaches the Unitary limit. The measured Kondo conductance demonstrates scaling with temperature, Zeeman magnetic field, and out-of-equilibrium bias. The suppression of the Kondo conductance with magnetic field is much stronger than would be expected based on a g-factor extracted from Zeeman splitting of the Kondo peak. This may be related to strong spin-orbit coupling in InAs.Comment: 12 pages, 7 figures. Revised version accepted for publicatio

    Nanoscale mapping and spectroscopy of non-radiative hyperbolic modes in hexagonal boron nitride nanostructures

    Full text link
    The inherent crystal anisotropy of hexagonal boron nitride (hBN) sustains naturally hyperbolic phonon polaritons, i.e. polaritons that can propagate with very large wavevectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subwavelength dimensions, support three-dimensionally confined optical modes in the mid-infrared. Due to optical selection rules, only a few of many such modes predicted theoretically have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy. The Photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion due to light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes could yield a new degree of control over the electromagnetic near-field concentration, polarization and angular momentum in nanophotonic applications.Comment: 14 pages with references, 4 figure

    Gate-defined quantum confinement in InSe-based van der Waals heterostructures

    Get PDF
    Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications

    Influence of Metal Deposition on Exciton–Surface Plasmon Polariton Coupling in GaAs/AlAs/GaAs Core–Shell Nanowires Studied with Time-Resolved Cathodoluminescence

    No full text
    The coupling of excitons to surface plasmon polaritons (SPPs) in Au- and Al-coated GaAs/AlAs/GaAs core–shell nanowires, possessing diameters of ∼100 nm, was probed using time-resolved cathodoluminescence (CL). Excitons were generated in the metal coated nanowires by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (<i>F</i><sub>P</sub>) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the nanowire exciton-SPP coupling and compared with a model that takes into account the dependence of <i>F</i><sub>P</sub> on the distance from the metal film and the thickness of the film covering the GaAs nanowires
    corecore