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Abstract 

Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) 

semiconductor with interesting electronic properties. Its tunable band gap and high electron 

mobility have already attracted considerable research interest. Here we demonstrate strong 

quantum confinement and manipulation of single electrons in devices made from few-layer 

crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the 

Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing 

multiple plateaus. The work represents an important milestone in the development of quality 

devices based on 2D materials and makes InSe a prime candidate for relevant electronic and 

optoelectronic applications. 

Keywords: Two-Dimensional Materials, Quantum Dots, Quantum Point Contacts, Charge 

Quantization, Indium Selenide, Electronic Devices. 

 

The electronic structure of two-dimensional (2D) metal chalcogenides (MCs) depends strongly 

upon the number of atomic layers. In many MCs the bandgap can vary by as much as 1 eV and 

its type can change from direct to indirect1,2. This opens many possibilities for band gap 

engineering in the construction of complex electronic systems using the van der Waals 

heterostructure platform3,4. In the last six years a large number of devices have been made from 

few-layer MCs including photodetectors5, light emitting diodes6, field effect transistors7,8 and 
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indirect exciton devices9, to name but a few. There has also been a great deal of interest in charge 

confinement within two-dimensional materials including one-dimensional (1D) channels in 

quantum point contact (QPCs)10 and zero-dimensional quantum dots (QDs)11. Realizing such 

systems could lead to novel quantum systems including spin-valley qubits12,13 and Luttinger 

liquids14. The first laterally confined devices realized using 2D crystals were quantum dots 

fabricated by etching graphene15,16. Those dots, however, suffered from limited performance and 

poor reproducibility due to edge states and charge inhomogeneities introduced by plasma 

etching17. The latter problem can be bypassed in semiconducting 2D crystals where the presence 

of a band gap enables QDs to be electrostatically defined using gate electrodes. Successful 

examples of gated defined quantum dots have been reported in 2D transition metal 

dichalcogenides (TMDCs), i.e. WSe2 ,WS2 and most recently MoS2 
18–20.  

 

By contrast, 1D quantization has proven elusive: until very recently, graphene has been the 

only 2D material to display signs of quantized conductance21–23. The difficulties in creating 

QPCs that exhibit quality quantization are due to the following. First, series contact resistances 

must be minimized to prevent 1D conductance steps from being obscured. Second, charge 

transport needs to be ballistic with the mean free path exceeding the size of QPC constrictions. 

Finally, the Fermi wavelength λF must be comparable to the constriction size, which typically 

requires low charge densities. Therefore, the constriction size must be very small or the charge 

carrier mobility  very high: an imposing challenge from a fabrication perspective. In practical 

terms, these requirements rule out many 2D materials. 
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Among the various TMDCs only a handful have shown sufficiently high , to observe 1D 

quantization. Recently, improvements in device fabrication have led to high mobility field-effect 

transistors made from WS2 (up to 16,000 cm2/Vs)24, MoS2 (up to 34,000 cm2/Vs)25, InSe (up to 

14,000 cm2/Vs)26 and black phosphorus (up to 50,000 cm2/Vs)27, high enough to observe the 

quantum Hall effect. Other possible contenders are few-layer WSe2 and MoSe2 which have been 

shown to exhibit  of around 2,000 cm2/Vs28,29 at cryogenic temperatures. Such mobilities make 

these materials promising candidates for the observation of 1D quantization. So far, QPC 

conductance plateaus have been only reported in high-quality MoS2 channels20,30,31 and 

graphene32
. As for 2D InSe, this metal chalcogenide has a semiconducting bandgap ranging from 

1.25 eV in the bulk to 2.9 eV in single-layer samples26,33. In addition, the bandgap remains quasi-

direct down to few-layer thickness34, making InSe-based devices promising for coupling with 

optics35,29. Less fortunately, 2D InSe degrades under ambient conditions and, therefore, its 

exposure to air must be avoided, which requires fabrication in an inert environment26.  

 

In this report, we describe the first low-dimensional InSe devices defined by local electrostatic 

gating. To avoid the degradation of the layers under ambient conditions, few-layer InSe crystals 

were encapsulated in hexagonal boron nitride (hBN) using the dry peel transfer technique inside 

an argon-filled glovebox chamber36. The top hBN encapsulation layer also serves as a dielectric 

for the top gates deposited later. For the electron beam lithography low energies of 10-30 kV 

have been used, as we have found that 100 kV can damage InSe in the vicinity of the exposed 

pattern, introducing additional disorder in the constriction. Ohmic contacts to 2D InSe were 

formed by depositing the InSe crystals on top of two graphene flakes37,25, which subsequently 

were contacted by Cr/Au electrodes as shown in Fig. 1a. To minimize the contact resistance, 
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additional top gates were deposited above each InSe/graphene interface to increase the carrier 

density and suppress the Schottky barrier. The QDs and QPCs were electrostatically defined with 

a series of top gates depicted in Fig. 1b. The overall carrier density n was controlled by the 

global back gate formed by the heavily doped silicon substrate. 2D InSe exhibits highest  for a 

thickness of 5-6 layers26 and, accordingly, we focus below on results obtained from devices with 

these thicknesses. The onset of Shubnikov-de Haas oscillations observed in devices (see 

Supplementary Information) yields  in the order of 10,000 cm2/Vs at T=1.5 K for electron 

densities of 𝑛  5x1012 cm-2, in agreement with the previous reported values26.  

 

  

 

Figure 1. hBN/InSe/hBN heterostructure with graphene contacts and multiple top gates. (a) 

Schematic showing individual layers: 2D InSe (red), graphene (dark grey), hBN (blue), Cr/Au 

contacts and top gates (yellow), Si/SiO2 substrate (light grey). (b) Optical micrograph showing 

one of our van der Waals heterostructures containing 6-layer InSe (dark yellow central region) 

which is sandwiched between thick (20-40nm) hBN crystals. The overlapping graphene contacts 

are outlined by the dashed green lines. Top gates serve to electrostatically define the quantum dot 
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region and, also, tune the carrier density at the graphene/InSe interface. (c,d) Close-up SEM 

images of QD gates. Labels O, L, P, R stand for overall, left, plunger and right gates, 

respectively. Scale bars, 100 nm. 

 

To define the QPCs, a negative voltage was applied to the top gates marked overall (O) and 

left (L) in Fig. 1d, meanwhile the other top gates (P and R) were held at zero potential. The total 

charge density was controlled by the back gate. Fig. 2a plots an example of the differential 

conductance G of such QPCs as a function of the split gate voltage VLO simultaneously applied to 

both O and L top gates (see Fig. 1d) at several fixed back-gate voltages VBG. All of the curves 

exhibit step-like features close to integer multiples of the conductance quantum 2e2/h  77.46 

µS, which suggests 1D spin-degenerate channels (h is the Planck constant and e the elementary 

charge). The shift of the conductance curves towards negative VLO at higher VBG is due to the 

increasing electron density induced by the back gate. The quality of quantization is similar to, if 

not better than, that observed in graphene-based QPCs in zero magnetic field21–23. It is of note, 

that the step-like features are more pronounced at higher n (dark blue curve in Fig. 2a), which 

makes it unlikely that mesoscopic conductance fluctuations contribute to these steps. The 

decrease in quality of the QPC features at lower 𝑛 can be attributed to shortening of the mean 

free path 𝑙 from 190 nm at VBG = 70 V (𝑛 = 3.5x1012 cm-2) to 105 nm at 60 V (𝑛  = 2.5x1012 

cm-2). The latter value is comparable to the size of our constrictions (see below). For the above 

estimates, we have used a reference device made in the Hall bar geometry and exhibiting similar 

 (see SI) and applied the Drude formula 𝑙 = ℎσ √2𝜋𝑛𝑒2⁄ , where σ is the conductivity. The 

conductance steps were reproducible for 3 different constrictions however, the quantization 



 7 

quality could notably differ (orange curve in Fig. 2a), most likely due to disorder within the QPC 

regions. 

 

 

Figure 2. Conductance quantization in InSe point contacts. (a) Differential conductance of a 

QPC made from 6-layer InSe at 2K (lines with symbols). The series (parasitic) resistance 𝑅p ≈ 1 

kΩ was subtracted for each VBG (See Supplementary Information: Methods). Dashed red line: 

calculated positions and widths of plateaus in the ideal case. Solid black curve: plateau shapes 

expected in our devices. Orange curve: another QPC device. (b) Electrostatic simulation of a 

symmetric constriction, showing the offset φ of the conductance band. White lines: =0. (c) 

One dimensional potential extracted from (b) across the dashed line. (d) Uncorrected (Rp = 0) 

conductance of QPC1 at VBG=75 V as a function of the applied DC voltage VDC along the 

constriction. VLO changes from -4.5 to -3.8 V in steps of 0.02 V (no offset). For all the 

measurements, the AC excitation was 100 μV, and 6 V was applied to the overlap gates above 

the InSe/graphene contacts. 

To support our observations, we calculated numerically the 1D quantization conductance 

expected in our experimental constrictions, with SEM and AFM imaging being used to extract 
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the size and shape of the constrictions. The self-consistent potential, 𝛷, was calculated using the 

3D Poisson equation with boundary conditions based on the electron density of states in the InSe 

layer: 

𝜌 = −
𝑒𝑚

𝜋ℏ2 𝑒𝛷 H(𝛷), 

 

Where 𝑚 = 0.14𝑚𝑒 is the effective mass in 2D InSe26, 𝑚𝑒 is the free electron mass, H(𝛷) is a 

step function that is zero when the potential is negative (fully depleted) and unity otherwise 

(when charge carriers are present) and 𝛷 is essentially the Fermi energy with respect to the 

conduction band edge. The potential calculated for the QPC narrowing (dashed line in Fig. 2b) 

was then used to solve the 1D Schrödinger equation and find the number of transverse modes 

propagating through the QPC. Except for the QPC pinch-off voltage, this model has no 

adjustable parameters. The resulting conductance plateaus are shown by the red dashed curve in 

Fig. 2a.  

 

For a more realistic description of the QPC, we used the parabolic saddle-point potential 

model38. The potential cuts were taken from our simulations of 𝛷 for VBG = 70 V and then 

approximated with parabolas within the vicinity of the constriction center (Fig. 2b). This was 

repeated for different values of VLO, which allowed us to find the dependence G(VLO). A result of 

this modelling is shown in Fig. 2a by the black solid curve (for clarity, it is shifted by –0.5 V 

along the x-axis), showing good agreement with the experimental dependence. Note that our 

approximation of the parabolic saddle-point potential gets progressively worse with increasing 

VLO range. 
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For completeness, Fig. 2d shows the bias voltage spectroscopy for one of our QPCs at VBG =75 

V and various split-gate voltages VLO. These measurements allow us to estimate the energy 

spacing between the 1D subbands, i.e.  > 3 meV, in general agreement with our solution to the 

1D Schrödinger equation, which gives a separation of  =10 meV between the first and second 

1D subband. 

 

In further experiments, quantum dots were formed by the depletion of the 2D electron gas 

underneath all four top gates in Figs 1c,d. The coupling of such QDs to the source and drain 

electrodes was adjusted using the left and right barrier gates whereas the back gate voltage was 

fixed throughout the measurements. The plunger gate was used to tune the chemical potential 

inside the QDs. Initial tuning and symmetrization were carried out by recording the two-terminal 

differential conductance through the QD as a function of both VL and VR, as shown in Fig. 3a. 

The conductance plot exhibits a series of bright lines that correspond to a finite conductance in 

the Coulomb blockade (CB) regime. We use this plot to select the gate voltages that lead to 

lithographically defined QDs and, thus, to avoid unintentional QDs due to disorder. The latter 

can appear inside the two constrictions. We expect that CB oscillations with a slope close to -1 in 

Fig. 3a originate from the intentional, lithographically defined QDs because the CB oscillations 

are equally affected by both gates. This indicates that the dot is localized somewhere between the 

two gates (an example is indicated by the white line in Fig. 3a). In contrast, horizontal or vertical 

lines in Fig. 3a correspond to unintentional QDs which are controlled by only one of the gates 

and, therefore, are localized in proximity. The latter QDs were discarded from our analysis. The 

region of gate voltages used in our analysis is marked by the circle in Fig. 3a.  
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Figure 3. Gate-defined quantum dots in 2D InSe. (a) Map of the two-terminal differential 

conductance as a function of voltages VR and VL which control the left and right barriers. Other 

gates were fixed at VBG = 50 V, VO= -4.51 V, VP= -2 V; 10 μV AC excitation. The diagonal lines 

are due to gate defined QDs and therefore react to both side gates, as designed. Accidental QDs 

are caused by disorder and are more sensitive to one gate. (b) Conductance in the region 

highlighted by the circle in (a). Coulomb diamonds extend to the edges of the scanned range 

(dashed white lines). Temperature, 50 mK. (c) Charge carrier density found in our 3D 

electrostatic simulation. The gates are indicated by yellow lines. 

Fig. 3b shows Coulomb diamonds observed in this region. The InSe QD exhibits an average 

plunger gate periodicity ΔVP of 19 mV. Using these measurements, we estimate an average 

charging energy Ec of 0.8 meV, which yields the dot’s self-capacitance of CΣ = e2/Ec  of 177 aF 

and plunger capacitance CP = e/VP ≈ 8 aF. However, the irregular shape of the diamonds 

suggests that the charging energy is comparable to the QD’s confinement energy ΔE, which 

makes the above values only an approximation39. This is the case because the estimates are based 

on the assumption ΔE≪Ec. No additional resonance lines indicating excited states were observed 
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within the conducting regions. This can be explained by a large tunneling amplitude t over the 

left and right barriers at nonzero VSD, which leads to a decrease in the lifetime of localized states 

and blurs fine features. The finite t is also the reason why the conductance is finite within the 

diamonds (t≪Ec implies no conductance). We have also calculated a charge density map for 

realistic values of our gate voltages (Fig. 3c). The figure shows an island in the electron gas 

which has a size of 100 nm and contains  60 electrons, in qualitative agreement with the above 

estimate for R. Changing the plunger gate values in our model, we have found similar gate 

coupling of CP ≈ 6 aF 

 

The found value of CΣ can be used to estimate the QD size by evoking the self-capacitance of 

an isolated disk with radius R in a dielectric medium11, Cdisc=8Rε0εr, where ε0 and εr 10 are the 

permittivity’s of a vacuum and InSe, respectively40. The total capacitance defining the charging 

energy is the sum of all the gate capacitances and the QD self-capacitance. For the purpose of 

our estimation, we assume that the barrier and plunger gate capacitances are approximately the 

same (10 aF) and the overall gate capacitance is three times larger. Consequently, the self-

capacitance of the InSe disk, Cdisk, should be around 120 aF, yielding R  170 nm.  

 

In conclusion, we have demonstrated both one-dimensional and zero-dimensional confinement in 

few-layer InSe. The relatively small in-plane electron mass and high electron mobility in 2D 

InSe enables the one-dimensional quantization of electrons by electrostatic gating. In addition, 

using local top gates strategically placed over the InSe/graphene overlap, we have been able to 

significantly reduce contact resistance to InSe. Following from these promising results, it seems 

that two-dimensional materials are an excellent platform to study 1D and 0D physics. As such 
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we envisage that InSe will play a strong role in the future of two-dimensional research and future 

applications. 

 

Supporting Information 

Methods detailing sample fabrication and electronic transport measurements such as SdH 

oscillations and field effect transistor behavior is provided in the Supporting Information.  
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