29 research outputs found

    Creation of a training and test dataset with the disposition and transposition of overlaying electrocardiographic electrodes when recording electrocardiograms-12

    Get PDF
    BACKGROUND: Electrocardiography is one of the simplest, most widely used, inexpensive, and informative methods in functional diagnostics; yet, if performed poorly, its diagnostic value is sharply reduced. Several attempts were made to systematize errors and deviations in electrode application, but all concerned the most common options (rearrangement of red and yellow electrodes, yellow and green electrodes, and chest electrodes above or below the standard scheme). AIM: To create an electrocardiogram dataset with different options for transpositions and dispositions of electrodes during electrocardiogram recording. MATERIALS AND METHODS: The study included patients aged 1875 years (27 males and 22 females). All patients provided informed consent for electrocardiogram registration. During one visit, the cardiogram was recorded on the device Modular system for recording and remote transmission of electrocardiograms (EASY ECG) for each patient. RESULTS: In all, 488 electrocardiograms were recorded in 49 patients. The results obtained indicate a significant variability of the electrocardiogram pattern. Visual analysis of the electrocardiograms revealed no difficulties in determining the transposition associated with rearranging the leads on the arms (RY) in the thoracic C1C2. The placement of thoracic electrodes in contact cheek-to-cheek dispositions with the transfer of thoracic leads above or below two intercostals was reliably determined compared with the Wilson scheme. The transpositions of the yellow and green limb electrodes and the change in the position of the thoracic ones when they are lined up in a straight line, bullied between the ribs (curved), and confused in places C5 and C6 are difficult to determine even when comparing two cardiograms next to each other, with the correct and transpositional superposition of the electrodes. The initial changes on the electrocardiograms, physique type, breast size, or the presence of an implant most likely determine it. CONCLUSION: An electrocardiography dataset was obtained using various electrode dislocation variants. The dataset consists of a series of electrocardiograms obtained for each patient with several electrode placement options and contains both normal and pathological electrocardiograms

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Spatio-temporal dynamics of single-cycle optical pulses and nonlinear frequency conversion

    No full text
    We model propagation of initially single-cycle wave packet exhibiting paraxial spatial diffraction in a homogeneous isotropic dielectric medium with normal group velocity dispersion and instantaneous cubic nonlinearity. We show that for higher input intensity, the number of field oscillations is increased and the temporal spectrum shifts to shorter wavelengths in the axial beam part and to longer wavelengths at the periphery of the beam, and this is accompanied by the formation of closed surfaces of equal phase. We find that at tripled frequencies a minimum of spectral density forms at low spatial frequencies, which is characteristic for single-cycle pulses. At higher spatial frequencies, the maximum of the spectral density shifts to quadruple temporal frequencies

    Structural Rearrangements of Carbonic Anhydrase Entrapped in Sol-Gel Magnetite Determined by ATR–FTIR Spectroscopy

    No full text
    Enzymatically active nanocomposites are a perspective class of bioactive materials that finds their application in numerous fields of science and technology ranging from biosensors and therapeutic agents to industrial catalysts. Key properties of such systems are their stability and activity under various conditions, the problems that are addressed in any research devoted to this class of materials. Understanding the principles that govern these properties is critical to the development of the field, especially when it comes to a new class of bioactive systems. Recently, a new class of enzymatically doped magnetite-based sol-gel systems emerged and paved the way for a variety of potent bioactive magnetic materials with improved thermal stability. Such systems already showed themself as perspective industrial and therapeutic agents, but are still under intense investigation and many aspects are still unclear. Here we made a first attempt to describe the interaction of biomolecules with magnetite-based sol-gel materials and to investigate facets of protein structure rearrangements occurring within the pores of magnetite sol-gel matrix using ATR Fourier-transform infrared spectroscopy

    Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen

    No full text
    Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines

    Bio-Inspired Surface Modification of Magnetite Nanoparticles with Dopamine Conjugates

    No full text
    Organically-coated nanomaterials are intensively studied and find numerous applications in a wide range of areas from optics to biomedicine. One of the recent trends in material science is the application of bio-mimetic polydopamine coatings that can be produced on a variety of substrates in a cost-efficient way under mild conditions. Such coatings not only modify the biocompatibility of the material but also add functional amino groups to the surface that can be further modified by classic conjugation techniques. Here we show an alternative strategy for substrates modification using dopamine conjugates instead of native dopamine. Compared to the classic scheme, the proposed strategy allows separation of the “organic” and “colloidal” stages, and simplified identification and purification steps. Modification with pre-modified dopamine made it possible to achieve high loading capacities with active components up to 10.5% wt. A series of organo-inorganic hybrids were synthesized and their bioactivity was analyzed
    corecore