7 research outputs found
A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial
Medical Research Council, UK Department for International Development, and Wellcome Trust
Cuticular permeance in relation to wax and cutin development along the growing barley ( Hordeum vulgare ) leaf.
The developing leaf three of barley provides an excellent model system for the direct determination of relationships between amounts of waxes and cutin and cuticular permeance. Permeance of the cuticle was assessed via the time-course of uptake of either toluidine blue or 14C-labelled benzoic acid ([14C] BA) along the length of the developing leaf. Toluidine blue uptake only occurred within the region 0–25 mm from the point of leaf insertion (POLI). Resistance—the inverse of permeance—to uptake of [14C] BA was determined for four leaf regions and was lowest in the region 10–20 mm above POLI. At 20–30 and 50–60 mm above POLI, it increased by factors of 6 and a further 32, respectively. Above the point of emergence of leaf three from the sheath of leaf two, which was 76–80 mm above POLI, resistance was as high as at 50–60 mm above POLI. GC-FID/MS analyses of wax and cutin showed that: (1) the initial seven fold increase in cuticular resistance coincided with increase in cutin coverage and appearance of waxes; (2) the second, larger and final increase in cuticle resistance was accompanied by an increase in wax coverage, whereas cutin coverage remained unchanged; (3) cutin deposition in barley leaf epidermis occurred in parallel with cell elongation, whereas deposition of significant amounts of wax commenced as cells ceased to elongate
Genomic Designing of Pearl Millet:A Resilient Crop for Arid and Semi-arid Environments
Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus americanus
(L.) Morrone] is the sixth most important cereal in the world. Today, pearl
millet is grown on more than 30 million ha mainly in West and Central Africa and
the Indian sub-continent as a staple food for more than 90 million people in agriculturally
marginal areas. It is rich in proteins and minerals and has numerous
health benefits such as being gluten-free and having slow-digesting starch. It is
grown as a forage crop in temperate areas. It is drought and heat tolerant, and a
climate-smart crop that can withstand unpredictable variability in climate. However,
research on pearl millet improvement is lagging behind other major cereals mainly
due to limited investment in terms of man and money power. So far breeding
achievements include the development of cytoplasmic male sterility (CMS),
maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for
hybrid breeding, dwarfing genes for reduced height, improved input responsiveness,
photoperiod neutrality for short growing season, and resistance to important
diseases. Further improvement of pearl millet for genetic yield potential, stress
tolerance, and nutritional quality traits would enhance food and nutrition security
for people living in agriculturally dissolute environments. Application of molecular
technology in the pearl millet breeding program has a promise in enhancing the
selection efficiency while shortening the lengthy phenotypic selection process ultimately improving the rate of genetic gains. Linkage analysis and genome-wide
association studies based on different marker systems in detecting quantitative trait
loci (QTLs) for important agronomic traits are well demonstrated. Genetic
resources including wild relatives have been categorized into primary, secondary
and tertiary gene pools based on the level of genetic barriers and ease of gene
introgression into pearl millet. A draft on pearl millet whole genome sequence was
recently published with an estimated 38,579 genes annotated to establish
genomic-assisted breeding. Resequencing a large number of germplasm lines and
several population genomic studies provided a valuable insight into population
structure, genetic diversity and domestication history of the crop. Successful
improvement in combination with modern genomic/genetic resources, tools and
technologies and adoption of pearl millet will not only improve the resilience of
global food system through on-farm diversification but also dietary intake which
depends on diminishingly fewer crops