97 research outputs found
Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases
Engineering polyketide synthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both native and non‐native polyketide substrates. Reactions pairing wildtype PKS modules with non‐native substrates primarily resulted in poor conversions to anticipated macrolactones. Likewise, product formation with native substrates and hybrid PKS modules bearing non‐cognate TE domains was severely reduced. In contrast, non‐native substrates were converted by most hybrid modules containing a substrate compatible TE, directly implicating this domain as the major catalytic gatekeeper and highlighting its value as a target for protein engineering to improve analog production in PKS pathways.Improved catalysis with engineered polyketide synthases: Pairing wild‐type polyketide synthases with non‐native substrates largely failed to produce the anticipated products. A series of hybrid modules bearing heterologous thioesterase domains were generated and employed to alleviate the observed catalytic bottleneck, resulting in the efficient processing of non‐native substrates and an unexpected path to product diversity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156208/3/anie202004991-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156208/2/anie202004991_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156208/1/anie202004991.pd
Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases
Engineering polyketide synthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both native and non‐native polyketide substrates. Reactions pairing wildtype PKS modules with non‐native substrates primarily resulted in poor conversions to anticipated macrolactones. Likewise, product formation with native substrates and hybrid PKS modules bearing non‐cognate TE domains was severely reduced. In contrast, non‐native substrates were converted by most hybrid modules containing a substrate compatible TE, directly implicating this domain as the major catalytic gatekeeper and highlighting its value as a target for protein engineering to improve analog production in PKS pathways.Improved catalysis with engineered polyketide synthases: Pairing wild‐type polyketide synthases with non‐native substrates largely failed to produce the anticipated products. A series of hybrid modules bearing heterologous thioesterase domains were generated and employed to alleviate the observed catalytic bottleneck, resulting in the efficient processing of non‐native substrates and an unexpected path to product diversity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156161/2/ange202004991-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156161/1/ange202004991.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156161/3/ange202004991_am.pd
Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor‐Induced Combinatorial Pairing of Stig Cyclases
Stereospecific polycyclic core formation of hapalindoles and fischerindoles is controlled by Stig cyclases through a three‐step cascade involving Cope rearrangement, 6‐exo‐trig cyclization, and a final electrophilic aromatic substitution. Reported here is a comprehensive study of all currently annotated Stig cyclases, revealing that these proteins can assemble into heteromeric complexes, induced by Ca2+, to cooperatively control the stereochemistry of hapalindole natural products.Die stereospezifische Bildung des polycyclischen Kerns der Hapalindole und Fischerindole wird durch Stig‐Cyclasen gesteuert, die eine dreistufige Kaskade aus Cope‐Umlagerung, 6‐exo‐trig‐Cyclisierung und elektrophiler aromatischer Substitution vermitteln. Die Proteine können sich induziert durch Ca2+ zu heterotrimeren Komplexen zusammenlagern, um auf kooperative Weise die Stereochemie zu steuern.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155506/1/ange201913686.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155506/2/ange201913686-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155506/3/ange201913686_am.pd
The association between retinal vascular geometry changes and diabetic retinopathy and their role in prediction of progression: an exploratory study
Background: The study describes the relationship of retinal vascular geometry (RVG) to severity of diabetic retinopathy (DR), and its predictive role for subsequent development of proliferative diabetic retinopathy (PDR). Methods. The research project comprises of two stages. Firstly, a comparative study of diabetic patients with different grades of DR. (No DR: Minimal non-proliferative DR: Severe non-proliferative DR: PDR) (10:10: 12: 19). Analysed RVG features including vascular widths and branching angles were compared between patient cohorts. A preliminary statistical model for determination of the retinopathy grade of patients, using these features, is presented. Secondly, in a longitudinal predictive study, RVG features were analysed for diabetic patients with progressive DR over 7 years. RVG at baseline was examined to determine risk for subsequent PDR development. Results: In the comparative study, increased DR severity was associated with gradual vascular dilatation (p = 0.000), and widening of the bifurcating angle (p = 0.000) with increase in smaller-child-vessel branching angle (p = 0.027). Type 2 diabetes and increased diabetes duration were associated with increased vascular width (p = <0.05 In the predictive study, at baseline, reduced small-child vascular width (OR = 0.73 (95 CI 0.58-0.92)), was predictive of future progression to PDR. Conclusions: The study findings suggest that RVG alterations can act as novel markers indicative of progression of DR severity and establishment of PDR. RVG may also have a potential predictive role in determining the risk of future retinopathy progression. © 2014 Habib et al.; licensee BioMed Central Ltd
Functional Evolution of Leptin of Ochotona curzoniae in Adaptive Thermogenesis Driven by Cold Environmental Stress
BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae), an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C) and cold (5±1°C) acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau
Recommended from our members
The origins and genomic diversity of American Civil War Era smallpox vaccine strains
Abstract: Vaccination has transformed public health, most notably including the eradication of smallpox. Despite its profound historical importance, little is known of the origins and diversity of the viruses used in smallpox vaccination. Prior to the twentieth century, the method, source and origin of smallpox vaccinations remained unstandardised and opaque. We reconstruct and analyse viral vaccine genomes associated with smallpox vaccination from historical artefacts. Significantly, we recover viral molecules through non-destructive sampling of historical materials lacking signs of biological residues. We use the authenticated ancient genomes to reveal the evolutionary relationships of smallpox vaccination viruses within the poxviruses as a whole
Reversal of Obesity and Insulin Resistance by a Non-Peptidic Glucagon-Like Peptide-1 Receptor Agonist in Diet-Induced Obese Mice
BACKGROUND: Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment. CONCLUSIONS/SIGNIFICANCE: Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism
Triage of patients with venous and lymphatic diseases during the COVID-19 pandemic – The Venous and Lymphatic Triage and Acuity Scale (VELTAS):: A consensus document of the International Union of Phlebology (UIP), Australasian College of Phlebology (ACP), American Vein and Lymphatic Society (AVLS), American Venous Forum (AVF), European College of Phlebology (ECoP), European Venous Forum (EVF), Interventional Radiology Society of Australasia (IRSA), Latin American Venous Forum, Pan-American Society of Phlebology and Lymphology and the Venous Association of India (VAI)
The coronavirus disease 2019 (COVID-19) global pandemic has resulted in diversion of healthcare resources to the management of patients infected with SARS-CoV-2 virus. Elective interventions and surgical procedures in most countries have been postponed and operating room resources have been diverted to manage the pandemic. The Venous and Lymphatic Triage and Acuity Scale was developed to provide an international standard to rationalise and harmonise the management of patients with venous and lymphatic disorders or vascular anomalies. Triage urgency was determined based on clinical assessment of urgency with which a patient would require medical treatment or surgical intervention. Clinical conditions were classified into six categories of: (1) venous thromboembolism (VTE), (2) chronic venous disease, (3) vascular anomalies, (4) venous trauma, (5) venous compression and (6) lymphatic disease. Triage urgency was categorised into four groups and individual conditions were allocated to each class of triage. These included (1) medical emergencies (requiring immediate attendance), example massive pulmonary embolism; (2) urgent (to be seen as soon as possible), example deep vein thrombosis; (3) semiurgent (to be attended to within 30-90 days), example highly symptomatic chronic venous disease, and (4) discretionary/nonurgent- (to be seen within 6-12 months), example chronic lymphoedema. Venous and Lymphatic Triage and Acuity Scale aims to standardise the triage of patients with venous and lymphatic disease or vascular anomalies by providing an international consensus-based classification of clinical categories and triage urgency. The scale may be used during pandemics such as the current COVID-19 crisis but may also be used as a general framework to classify urgency of the listed conditions
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care(1) or hospitalization(2-4) after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease. © 2022, The Author(s)
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
- …