133 research outputs found

    Vitamin D Deficiency in Obese Children and Its Relationship to Insulin Resistance and Adipokines

    Get PDF
    Low-serum concentrations of 25-hydroxyvitamin D [25(OH)D] are associated with insulin resistance in adults. Less data are available in pediatric populations. Serum 25(OH)D serum concentrations were assessed in 125 obese and 31 nonobese children (age 11.9 ± 2.7 y, range 6–16 y, 49% male) living in Bonn, Germany. The relationship between 25(OH)D, measured by liquid chromatography-tandem mass spectrometry, and measures of insulin sensitivity and adipokines adiponectin and resistin were analyzed. Seventy-six % of subjects were 25(OH)D deficient (<20 ng/mL). Higher insulin, homeostasis model assessment-insulin resistance (HOMA-IR r = −0.269, P = 0.023), and hemoglobin A1c (HbA1c) as well as lower quantitative insulin-sensitivity check index (QUICKI r = 0.264, P = 0.030) values were found in obese children with lower 25(OH)D concentrations even after adjustment for gender, age, and body mass index. Furthermore, 25(OH)D correlated significantly with adiponectin, but not with resistin. Our results suggest that hypovitaminosis D is a risk factor for developing insulin resistance independent of adiposity

    A Targeted Multiomics Approach to Identify Biomarkers Associated with Rapid eGFR Decline in Type 1 Diabetes

    Get PDF
    Background: Individuals with type 1 diabetes (T1D) demonstrate varied trajectories of estimated glomerular filtration rate (eGFR) decline. The molecular pathways underlying rapid eGFR decline in T1D are poorly understood, and individual-level risk of rapid eGFR decline is difficult to predict. Methods: We designed a case-control study with multiple exposure measurements nested within 4 well-characterized T1D cohorts (FinnDiane, Steno, EDC, and CACTI) to identify biomarkers associated with rapid eGFR decline. Here, we report the rationale for and design of these studies as well as results of models testing associations of clinical characteristics with rapid eGFR decline in the study population, upon which "omics" studies will be built. Cases (n = 535) and controls (n = 895) were defined as having an annual eGFR decline of >= 3 andPeer reviewe

    Biomarkers of vitamin B-12 status in NHANES: a roundtable summary123456

    Get PDF
    A roundtable to discuss the measurement of vitamin B-12 (cobalamin) status biomarkers in NHANES took place in July 2010. NHANES stopped measuring vitamin B-12–related biomarkers after 2006. The roundtable reviewed 3 biomarkers of vitamin B-12 status used in past NHANES—serum vitamin B-12, methylmalonic acid (MMA), and total homocysteine (tHcy)—and discussed the potential utility of measuring holotranscobalamin (holoTC) for future NHANES. The roundtable focused on public health considerations and the quality of the measurement procedures and reference methods and materials that past NHANES used or that are available for future NHANES. Roundtable members supported reinstating vitamin B-12 status measures in NHANES. They noted evolving concerns and uncertainties regarding whether subclinical (mild, asymptomatic) vitamin B-12 deficiency is a public health concern. They identified the need for evidence from clinical trials to address causal relations between subclinical vitamin B-12 deficiency and adverse health outcomes as well as appropriate cutoffs for interpreting vitamin B-12–related biomarkers. They agreed that problems with sensitivity and specificity of individual biomarkers underscore the need for including at least one biomarker of circulating vitamin B-12 (serum vitamin B-12 or holoTC) and one functional biomarker (MMA or tHcy) in NHANES. The inclusion of both serum vitamin B-12 and plasma MMA, which have been associated with cognitive dysfunction and anemia in NHANES and in other population-based studies, was preferable to provide continuity with past NHANES. Reliable measurement procedures are available, and National Institute of Standards and Technology reference materials are available or in development for serum vitamin B-12 and MMA

    Biomarkers of folate status in NHANES: a roundtable summary123456

    Get PDF
    A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA

    Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry-Based Assays

    Get PDF
    BACKGROUND: For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT: The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care

    Clinical Validation of a Highly Sensitive GC-MS Platform for Routine Urine Drug Screening and Real-Time Reporting of up to 212 Drugs

    Get PDF
    An important role of the clinical toxicology laboratory is to provide continuous diagnostic testing for patients with altered mental status and for other medical indications. To meet these needs, we have developed a new Gas Chromatography-Mass Spectrometry (GC-MS) platform that facilitates routine screening and automated reporting of 212 drugs by laboratory technologists around the clock without the need to sign out by an on-site mass spectrometry-trained toxicologist. The platform uses a programmable temperature vaporizer (PTV) injector for large sample volume injection and the free software Automated Mass Spectral Deconvolution and Identification System (AMDIS) for data reduction and spectral matching that facilitates rapid library searching and analyte identification. Method comparison with 118 patient samples demonstrated that this platform and data searching algorithm independently provided improvements in sensitivity compared to an established GC-MS platform. Further examination of the role of the data processing software and the in-house databases used in the established versus the new platform demonstrated that the improved analytical sensitivity of the new platform was attributed to both the technical superiority of the new GC-MS instrumentation and the use of AMDIS in conjunction with the newly generated in-house library for data processing

    Vitamin D–Binding Protein Concentrations Quantified by Mass Spectrometry

    Full text link
    interior, stained glass dome, 200
    corecore