151 research outputs found

    A Method for Static-Field Compression in an Electron-Ring Accelerator

    Full text link

    Scaffolds for 3D in vitro culture of neural lineage cells.

    Get PDF
    Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research

    Tailored emulsion-templated porous polymer scaffolds for iPSC-derived human neural precursor cell culture

    Get PDF
    The work here describes the synthesis of tailor-made, porous, polymeric materials with elastic moduli in the range associated with mammalian brain tissue (0.1–24 kPa). Three new emulsion-templated porous polymer materials (polyHIPEs) were synthesised by thiol–ene photopolymerisation from hexanediol diacrylate (HDDA) and polyethylene glycol diacrylate (PEGDA) crosslinkers and compared with a previously reported material prepared from trimethylolpropane triacrylate (TMPTA). The materials were found to have an average pore diameter of 30–63 μm and a porosity of 77% and above. PEGDA crosslinked materials at 80 and 85% porosity, when swollen in PBS at 37 °C, were found to have an elastic modulus of 18 and 9.0 kPa respectively. PEGDA crosslinked materials were also found to have a swelling ratio of 700% in PBS at 37 °C. PEGDA crosslinked materials had improved visible light transmission properties when compared to TMPTA crosslinked materials under a bright field microscope. All materials were shown via hematoxylin and eosin staining to support the infiltration and attachment of induced pluripotent stem cell (iPSC)-derived human neural progenitor cells (hNPCs). HNPCs on all materials were demonstrated in short term 3D cultures to maintain a phenotype consistent with early neural lineage specification via immunohistochemical staining for the intermediate filament protein vimentin

    Genome sequence of the broad-host-range Pseudomonas phage Phi-S1

    Get PDF
    The broad-host-range lytic Pseudomonas phage Φ-S1 possess a 40,192 bp double-stranded DNA (dsDNA) genome of 47 open reading frames (ORFs) and belongs to the family Podoviridae, subfamily Autographivirinae, genus T7likevirus.S.S. acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) (grant SFRH/BPD/48803/2008) and the FCT project PTDC/EBB-BIO/114760/2009

    Observations on three-dimensional measurement of confined fission track lengths in apatite using digital imagery

    Get PDF
    We report the results of a comparative study to explore the usefulness of 3D measurements of confined fission track lengths (TINTs) relative to horizontal confined track length measurements (dips ≤10°), and evaluate their suitability for thermal history modeling. Confined fission track lengths were measured in 10 annealed Fish Canyon Tuff apatites containing synthetic mixtures of different length components, and two Durango apatites containing spontaneous fission tracks. Measurements were primarily carried out using a digital image-based microscope system, and they were compared to those from a regular optical drawing tube-digitizing tablet setup, and a confocal laser scanning microscope. The results indicate that 3D measurements of confined track lengths are closely comparable to conventional horizontal track measurements, and the mean track lengths of inclined (dips >10°) and horizontal (dips ≤10°) confined tracks from the one sample are equivalent within the measurement uncertainty. A strong dip-bias was observed, so that almost all the confined tracks measured were dipping at <30°, and the great majority (~70%) were dipping at ≤10°, thereby qualifying as “horizontal” confined tracks. Our results suggest that a useful increase of more than 40% in sample size can be achieved from including dip- and refraction-corrected 3D track length measurements. Some evidence was seen for a small bias in favor of shorter tracks at higher dip angles but this has very little influence on the mean lengths or length distributions up to the practical limit of dips (~30°) observed in these measurements. Results obtained using the same measurement system by a single analyst over time and between six different observers in the one laboratory show good reproducibility. These results also agree well with conventional horizontal confined track length measurements in the same samples in the second laboratory involved. We conclude that 3D measurements of confined track lengths, including both horizontal and inclined tracks, are suitable for use in current fission track annealing models derived from experiments using horizontal confined tracks

    A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells

    Get PDF
    Background: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. Methodology/Principal Findings: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. Significance: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency

    Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 : a unique member of the Siphoviridae family

    Get PDF
    Relatively few phages (<10) of coagulase-negative staphylococci (CoNS) have been described. S. epidermidis phage vB_SepS_SEP9 is a siphovirus with a unique morphology as a staphylococcal phage, possessing a very long tail. Its genome is unique and unrelated to any phage genomes deposited in public databases. It appears to encode a nonfunctional integrase. Due to the not having a recognizable lysogeny module, the phage is unable lysogenize. The genome comprises 129 coding sequences (CDS), 46 of which have an assigned function and 59 are unique. Its unique morphology and genome led to the proposal of the establishment of a new Siphoviridae genus named “Sep9likevirus”
    • …
    corecore