1,904 research outputs found

    The Ontogeny of Social Behavior of Uinta Ground Squirrels

    Get PDF
    The social behavior of juvenile Uinta ground squirrels (Spermophilus armatus) was studied for 2 1/2 years in northeastern Utah. The purpose of the study was to describe the developing social behavior of unconfined, marked squirrels. Their behavior was recorded with motion pictures and written descriptions from the time they emerged from the natal burrow until they entered hibernation. Three phases of behavioral development were apparent. The first phase began when the juveniles appeared above ground and ended 5 weeks later. This was a period of socialization and consisted of behavioral patterns best described as play. The second phase began abruptly with the development of intolerance and attachment to a particular site. The agonistic behavior of juveniles at this time was much the same as the adult pattern. The third phase began when they had been above ground about 8 1/2 weeks and ended with hibernation, at about 11 weeks. During this period juveniles combined the behavioral patterns of the first two periods . However, they became progressively less active as hibernation approached. Sex was an important determinant of the developing behavior of juveniles. Although males and females had similar behavioral repertoires, the frequency with which they performed specific activities often differed between the three periods

    The role of lithosphere thickness in the formation of ocean islands and seamounts: contrasts between the Louisville and Emperor-Hawaiian hotspot trails

    Get PDF
    The Hawaii-Emperor and Louisville seamounts form the two most prominent time-progressive hotspot trails on Earth. Both formed over a similar time interval on lithosphere with a similar range of ages and thickness. The Hawaii-Emperor seamounts are large and magma productivity appears to be increasing at present. The Louisville seamounts, by contrast, are smaller and the trail appears to be waning. We present new major-and trace element data from five of the older (74-50 Ma) Louisville seamounts drilled during International Ocean Drilling Program (IODP) Expedition 330 and compare these to published data from the Emperor seamounts of the same age. Despite drilling deep into the shield-forming volcanic rocks at three of the Louisville seamounts, our data confirm the results of earlier studies based on dredge samples that the Louisville seamounts are composed of remarkably uniform alkali basalt. The basalt composition can be modelled by ~1.5–3% partial melting of a dominantly garnet lherzolite mantle with a composition similar to that of the Ontong Java Plateau mantle source. Rock samples recovered by dredging and drilling on the Emperor Seamounts range in composition from tholeiitic to alkali basalt and require larger degrees of melting (2–10%) and spinel-to garnet lherzolite mantle sources. We use a simple decompression melting model to show that melting of mantle with a potential temperature of 1500ºC under lithosphere of varying thickness can account for the composition of the shield-forming tholeiitic basalts from the Emperor seamounts, while post-shield alkali basalt requires a lower temperature (1300–1400ºC). This is consistent with the derivation of Hawaii-Emperor shield-forming magmas from the hotter axis of a mantle plume and the post-shield magmas from the cooler plume sheath as the seamount drifts away from the plume axis. The composition of basalt from the Louisville seamounts shows no significant variation with lithosphere thickness at the time of seamount formation, contrary to the predictions of our decompression melting model. This lack of influence of lithospheric thickness ischaracteristic of basalt from most ocean islands. Theproblem can be resolved if the Louisville seamounts were formed by dehydration melting of mantle containinga small amount of water in a cooler plume. Hydrous melting in a relatively cool mantle plume (Tp=1350–1400°C) could produce a small amount of melt and then be inhibited by increasing viscosity from reaching the dry mantle solidus and melting further. The failure of the plume to reach the dry mantle solidus or the base of the lithosphere means that the resulting magmas would have the same composition irrespective of lithosphere thickness. A hotter mantle plume (Tp≈1500°C) beneath the Emperor seamounts and the Hawaiian Islands would have lower viscosity before the onset of melting, melt to a larger extent, and decompress to the base of the lithosphere. Thus our decompression melting model could potentially explain the composition of both the Emperor and Louisville seamounts. The absence of a significant lithospheric control on the composition of basalt from nearly all ocean islands suggests that dehydration melting is the rule and the Hawaiian islands the exception. Alternatively, many ocean islands may not be the product of mantle plumes but instead be formed by decompression melting of heterogeneous mantle sources composed of peridotite containing discrete bodies of carbonated and silica-oversaturated eclogite within the general upper mantle convective flow

    Mechanical suppression of osteolytic bone metastases in advanced breast cancer patients: A randomised controlled study protocol evaluating safety, feasibility and preliminary efficacy of exercise as a targeted medicine

    Get PDF
    Background: Skeletal metastases present a major challenge for clinicians, representing an advanced and typically incurable stage of cancer. Bone is also the most common location for metastatic breast carcinoma, with skeletal lesions identified in over 80% of patients with advanced breast cancer. Preclinical models have demonstrated the ability of mechanical stimulation to suppress tumour formation and promote skeletal preservation at bone sites with osteolytic lesions, generating modulatory interference of tumour-driven bone remodelling. Preclinical studies have also demonstrated anti-cancer effects through exercise by minimising tumour hypoxia, normalising tumour vasculature and increasing tumoural blood perfusion. This study proposes to explore the promising role of targeted exercise to suppress tumour growth while concomitantly delivering broader health benefits in patients with advanced breast cancer with osteolytic bone metastases. Methods: This single-blinded, two-armed, randomised and controlled pilot study aims to establish the safety, feasibility and efficacy of an individually tailored, modular multi-modal exercise programme incorporating spinal isometric training (targeted muscle contraction) in 40 women with advanced breast cancer and stable osteolytic spinal metastases. Participants will be randomly assigned to exercise or usual medical care. The intervention arm will receive a 3-month clinically supervised exercise programme, which if proven to be safe and efficacious will be offered to the control-arm patients following study completion. Primary endpoints (programme feasibility, safety, tolerance and adherence) and secondary endpoints (tumour morphology, serum tumour biomarkers, bone metabolism, inflammation, anthropometry, body composition, bone pain, physical function and patient-reported outcomes) will be measured at baseline and following the intervention. Discussion: Exercise medicine may positively alter tumour biology through numerous mechanical and nonmechanical mechanisms. This randomised controlled pilot trial will explore the preliminary effects of targeted exercise on tumour morphology and circulating metastatic tumour biomarkers using an osteolytic skeletal metastases model in patients with breast cancer. The study is principally aimed at establishing feasibility and safety. If proven to be safe and feasible, results from this study could have important implications for the delivery of this exercise programme to patients with advanced cancer and sclerotic skeletal metastases or with skeletal lesions present in haematological cancers (such as osteolytic lesions in multiple myeloma), for which future research is recommended. Trial registration: anzctr.org.au, ACTRN-12616001368426. Registered on 4 October 2016

    FGF Signaling Regulates the Number of Posterior Taste Papillae by Controlling Progenitor Field Size

    Get PDF
    The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1−/−;Spry2−/− embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway

    Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory

    Get PDF
    We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of the Si II 4130, 5972, and 6355 A lines, as well those of the Ca II near-infrared (NIR) triplet, up to +5 days relative to the SN B-band maximum light. We find that a high-velocity component of the Ca II NIR triplet is needed to explain the spectrum in ~95 per cent of SNe Ia observed before -5 days, decreasing to ~80 per cent at maximum. The average velocity of the Ca II high-velocity component is ~8500 km/s higher than the photospheric component. We confirm previous results that SNe Ia around maximum light with a larger contribution from the high-velocity component relative to the photospheric component in their Ca II NIR feature have, on average, broader light curves and lower Ca II NIR photospheric velocities. We find that these relations are driven by both a stronger high-velocity component and a weaker contribution from the photospheric Ca II NIR component in broader light curve SNe Ia. We identify the presence of C II in very-early-time SN Ia spectra (before -10 days), finding that >40 per cent of SNe Ia observed at these phases show signs of unburnt material in their spectra, and that C II features are more likely to be found in SNe Ia having narrower light curves.Comment: 18 page, 10 figures, accepted for publication in MNRA

    Addressing data integration challenges to link ecological processes across scales

    Get PDF
    Data integration is a statistical modeling approach that incorporates multiple data sources within a unified analytical framework. Macrosystems ecology – the study of ecological phenomena at broad scales, including interactions across scales – increasingly employs data integration techniques to expand the spatiotemporal scope of research and inferences, increase the precision of parameter estimates, and account for multiple sources of uncertainty in estimates of multiscale processes. We highlight four common analytical challenges to data integration in macrosystems ecology research: data scale mismatches, unbalanced data, sampling biases, and model development and assessment. We explain each problem, discuss current approaches to address the issue, and describe potential areas of research to overcome these hurdles. Use of data integration techniques has increased rapidly in recent years, and given the inferential value of such approaches, we expect continued development and wider application across ecological disciplines, especially in macrosystems ecology

    The difference that tenure makes

    Get PDF
    This paper argues that housing tenures cannot be reduced to either production relations or consumption relations. Instead, they need to be understood as modes of housing distribution, and as having complex and dynamic relations with social classes. Building on a critique of both the productionist and the consumptionist literature, as well as of formalist accounts of the relations between tenure and class, the paper attempts to lay the foundations for a new theory of housing tenure. In order to do this, a new theory of class is articulated, which is then used to throw new light on the nature of class-tenure relations

    Vertical Distribution and Migration Patterns of Nautilus pompilius

    Get PDF
    Vertical depth migrations into shallower waters at night by the chambered cephalopod Nautilus were first hypothesized early in the early 20th Century. Subsequent studies have supported the hypothesis that Nautilus spend daytime hours at depth and only ascend to around 200 m at night. Here we challenge this idea of a universal Nautilus behavior. Ultrasonic telemetry techniques were employed to track eleven specimens of Nautilus pompilius for variable times ranging from one to 78 days at Osprey Reef, Coral Sea, Australia. To supplement these observations, six remotely operated vehicle (ROV) dives were conducted at the same location to provide 29 hours of observations from 100 to 800 meter depths which sighted an additional 48 individuals, including five juveniles, all deeper than 489 m. The resulting data suggest virtually continuous, nightly movement between depths of 130 to 700 m, with daytime behavior split between either virtual stasis in the relatively shallow 160–225 m depths or active foraging in depths between 489 to 700 m. The findings also extend the known habitable depth range of Nautilus to 700 m, demonstrate juvenile distribution within the same habitat as adults and document daytime feeding behavior. These data support a hypothesis that, contrary to previously observed diurnal patterns of shallower at night than day, more complex vertical movement patterns may exist in at least this, and perhaps all other Nautilus populations. These are most likely dictated by optimal feeding substrate, avoidance of daytime visual predators, requirements for resting periods at 200 m to regain neutral buoyancy, upper temperature limits of around 25°C and implosion depths of 800 m. The slope, terrain and biological community of the various geographically separated Nautilus populations may provide different permutations and combinations of the above factors resulting in preferred vertical movement strategies most suited for each population
    corecore