15 research outputs found

    Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling

    Get PDF
    The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.National Institutes of Health (U.S.) (grant 1DP2OD004213)National Institutes of Health (U.S.) (grant 1U54CA143836)National Science Foundation (U.S.) (Grant CMMI PESO 1105539)National Institutes of Health (U.S.) (NRSA postdoctoral fellowship (1F32CA174361))National Cancer Institute (U.S.) (MD Anderson RPPA Core facility grant (2P30CA016672)

    A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    Get PDF
    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Ξ”cdc20 mutant parasites were largely different from those observed in the Ξ”map2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis

    A composite hydrogel platform for the dissection of tumor cell migration at tissue interfaces.

    No full text
    Glioblastoma multiforme (GBM), the most prevalent primary brain cancer, is characterized by diffuse infiltration of tumor cells into brain tissue, which severely complicates surgical resection and contributes to tumor recurrence. The most rapid mode of tissue infiltration occurs along blood vessels or white matter tracts, which represent topological interfaces thought to serve as "tracks" that speed cell migration. Despite this observation, the field lacks experimental paradigms that capture key features of these tissue interfaces and allow reductionist dissection of mechanisms of this interfacial motility. To address this need, we developed a culture system in which tumor cells are sandwiched between a fibronectin-coated ventral surface representing vascular basement membrane and a dorsal hyaluronic acid (HA) surface representing brain parenchyma. We find that inclusion of the dorsal HA surface induces formation of adhesive complexes and significantly slows cell migration relative to a free fibronectin-coated surface. This retardation is amplified by inclusion of integrin binding peptides in the dorsal layer and expression of CD44, suggesting that the dorsal surface slows migration through biochemically specific mechanisms rather than simple steric hindrance. Moreover, both the reduction in migration speed and assembly of dorsal adhesions depend on myosin activation and the stiffness of the ventral layer, implying that mechanochemical feedback directed by the ventral layer can influence adhesive signaling at the dorsal surface

    A synthetic hydrogel for the high-throughput study of cell-ECM interactions.

    No full text
    It remains extremely challenging to dissect the cooperative influence of multiple extracellular matrix (ECM) parameters on cell behaviour. This stems in part from a lack of easily deployable strategies for the combinatorial variation of matrix biochemical and biophysical properties. Here we describe a simple, high-throughput platform based on light-modulated hyaluronic acid hydrogels that enables imposition of mutually independent and spatially continuous gradients of ligand density and substrate stiffness. We validate this system by showing that it can support mechanosensitive differentiation of mesenchymal stem cells. We also use it to show that the oncogenic microRNA, miR18a, is nonlinearly regulated by matrix stiffness and fibronectin density in glioma cells. The parallelization of experiments enabled by this platform allows condensation of studies that would normally require hundreds of independent hydrogels to a single substrate. This system is a highly accessible, high-throughput technique to study the combinatorial variation of biophysical and biochemical signals in a single experimental paradigm

    Microenvironmental stiffness regulates expression and phosphorylation of EGFR pathway components.

    No full text
    <p>The expression of activated EGFR, activated Akt and PI3K in U373-MG cells rises with increasing substrate stiffness (A). Similarly, the expression levels of EGFR and Akt in U373-MG cells rise with increasing substrate stiffness (B). Results represent quantification of at least three biological replicates on three separate Western blots, where the relative protein expression levels have been first normalized to the expression of GAPDH and then normalized to the expression level on the stiffest substrate of 119 kPa. Representative blots for each protein are on the right. *, P<0.05 with respect to 119 kPa.</p

    Stifffness-dependent glioma cell proliferation is dampened upon treatment with 20 uM EGFR inhibitor - Tyrphostin, 20 uM Akt inhibitor - Triciribine, and 20 uM PI3 Kinase inhibitor - Wortmannin for 24 hours as compared with the DMSO negative control.

    No full text
    <p>Results represent quantification of n>10,000 cells for at least three substrates per condition by flow cytometry, where the percentage of dividing cells was determined as the average percentage of cells staining positive for BrdU incorporation *, P<0.05 with respect to 119 kPa for DMSO control, 20 uM Tyrphostin and 20 uM Triciribine.</p

    ECM rigidity regulates glioma cell cycle distribution.

    No full text
    <p>Effect of ECM rigidity on cell cycle distribution of U373-MG (A) and U87-MG (B) cells. Results represent quantification of n>10,000 cells for at least three substrates per condition by flow cytometry, where the percentage of cells in each phase of the cell cycle was determined as the average percentage of cells staining positive for propidium iodide incorporation. *, P<0.05 with respect to 119 kPa.</p

    Altered cell mechanics from the inside: dispersed single wall carbon nanotubes integrate with and restructure actin.

    No full text
    <p>With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.</p
    corecore