1,483 research outputs found

    Diminished AMPK signaling response to fasting in thioredoxin-interacting protein knockout mice

    Get PDF
    AbstractThioredoxin-interacting protein (Txnip) knockout (TKO) mice exhibit impaired response to fasting. Herein, we showed that activation of adenine monophosphate-activated protein kinase and cellular AMP levels were diminished in the heart and soleus muscle but not in gastrocnemius muscle of fasting TKO mice. Similarly, glycogen content in fasted TKO mice was increased in oxidative muscles but was not different in glycolytic muscles. These data suggest Txnip deficiency has a higher impact on oxidative muscle than glycolytic muscles and provide new insights into the metabolic role of Txnip

    Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice

    Get PDF
    The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2 + channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad−/− calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, + 11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity

    Atomic Tunneling from a STM/AFM tip: Dissipative Quantum Effects from Phonons

    Full text link
    We study the effects of phonons on the tunneling of an atom between two surfaces. In contrast to an atom tunneling in the bulk, the phonons couple very strongly, and qualitatively change the tunneling behavior. This is the first example of {\it ohmic} coupling from phonons for a two-state system. We propose an experiment in which an atom tunnels from the tip of an STM, and show how its behavior would be similar to the Macroscopic Quantum Coherence behavior predicted for SQUIDS. The ability to tune and calculate many parameters would lead to detailed tests of the standard theories. (For a general intro to this work on the on the World-Wide-Web: http://www.lassp.cornell.edu. Click on ``Entertaining Science Done Here'' and ``Quantum Tunneling of Atoms'')Comment: 12 pages, ReVTex3.0, two figures (postscript). This is a (substantially) revised version of cond-mat/9406043. More info (+ postscript text) at : http://www.lassp.cornell.edu/ardlouis/publications.htm

    Altered Tyrosine Phosphorylation of Cardiac Proteins Prompts Contractile Dysfunction in Hypertrophic Cardiomyopathy

    Get PDF
    Altered Serine/Threonine phosphorylation of the cardiac proteome is an established hallmark of heart failure (HF). However, the contribution of tyrosine phosphorylation to the pathogenesis of these diseases remains unclear. The cardiac proteome was explored by global mapping to discover and quantify site-specific tyrosine phosphorylation in two cardiac hypertrophic models; cardiac overexpression of ErbB2 (TgErbB2) and cardiac expression of a-Myosin heavy chain R403Q (R403Q-aMyHCTg) compared to control hearts. Phosphoproteomic changes found in R403Q-aMyHC Tg mice indicated EGFR1, Focal Adhesion, VEGF, ErbB signaling, and Chemokine signaling pathways activity were likely to be activated. On the other hand, TgErbB2 mice findings displayed significant overrepresentation of Right Ventricular Cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), and dilated cardiomyopathy (DCM) KEGG Pathways. In silico kinase-substrate enrichment analysis (KSEA) highlighted a marked downregulation of canonical MAPK Pathway Activity downstream of k-Ras in TgErbB2 mice and activation of EGFR, PP2 inhibition of c-Src, and Hepatocyte growth factor stimulation. In vivo ErbB2 inhibition by AG-825 decreased cardiac fibrosis, cardiomyocyte disarray, and rescued contractile function on TgErbB2 mice. These results suggest that altered tyrosine phosphorylation may play a regulatory role in cardiac hypertrophic models, suggesting that tyrosine kinase inhibitors could be used therapeutically in Hypertrophic Cardiomyopathy

    Oral vitamin B12 for patients suspected of subtle cobalamin deficiency: a multicentre pragmatic randomised controlled trial

    Get PDF
    BACKGROUND: Evidence regarding the effectiveness of oral vitamin B12 in patients with serum vitamin B12 levels between 125-200 pM/l is lacking. We compared the effectiveness of one-month oral vitamin B12 supplementation in patients with a subtle vitamin B12 deficiency to that of a placebo. METHODS: This multicentre (13 general practices, two nursing homes, and one primary care center in western Switzerland), parallel, randomised, controlled, closed-label, observer-blind trial included 50 patients with serum vitamin B12 levels between 125-200 pM/l who were randomized to receive either oral vitamin B12 (1000 μg daily, N = 26) or placebo (N = 24) for four weeks. The institution's pharmacist used simple randomisation to generate a table and allocate treatments. The primary outcome was the change in serum methylmalonic acid (MMA) levels after one month of treatment. Secondary outcomes were changes in total homocysteine and serum vitamin B12 levels. Blood samples were centralised for analysis and adherence to treatment was verified by an electronic device (MEMS; Aardex Europe, Switzerland). Trial registration: ISRCTN 22063938. RESULTS: Baseline characteristics and adherence to treatment were similar in both groups. After one month, one patient in the placebo group was lost to follow-up. Data were evaluated by intention-to-treat analysis. One month of vitamin B12 treatment (N = 26) lowered serum MMA levels by 0.13 μmol/l (95%CI 0.06-0.19) more than the change observed in the placebo group (N = 23). The number of patients needed to treat to detect a metabolic response in MMA after one month was 2.6 (95% CI 1.7-6.4). A significant change was observed for the B12 serum level, but not for the homocysteine level, hematocrit, or mean corpuscular volume. After three months without active treatment (at four months), significant differences in MMA levels were no longer detected. CONCLUSIONS: Oral vitamin B12 treatment normalised the metabolic markers of vitamin B12 deficiency. However, a one-month daily treatment with 1000 μg oral vitamin B12 was not sufficient to normalise the deficiency markers for four months, and treatment had no effect on haematological signs of B12 deficiency

    Identification of Lactoferricin B Intracellular Targets Using an Escherichia coli Proteome Chip

    Get PDF
    Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
    corecore