162 research outputs found

    Bacteriophages to control Shiga toxin-producing E. coli safety and regulatory challenges

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.The authors thank the Portuguese Foundation for Scienceand Technology (FCT) through the strategic funding of UID/BIO/04469/2019 unit, and the project PhageSTEC [PTDC/CVT-CVT/29628/2017], under the scope of COMPETE 2020 [POCI-01-0145-FEDER-029628]. The author GP acknowledges theFCT grant [SFRH/BD/117365/2016].info:eu-repo/semantics/publishedVersio

    The maximum of the local time of a diffusion process in a drifted Brownian potential

    Full text link
    We consider a one-dimensional diffusion process XX in a (−κ/2)(-\kappa/2)-drifted Brownian potential for κ≠0\kappa\neq 0. We are interested in the maximum of its local time, and study its almost sure asymptotic behaviour, which is proved to be different from the behaviour of the maximum local time of the transient random walk in random environment. We also obtain the convergence in law of the maximum local time of XX under the annealed law after suitable renormalization when κ≥1\kappa \geq 1. Moreover, we characterize all the upper and lower classes for the hitting times of XX, in the sense of Paul L\'evy, and provide laws of the iterated logarithm for the diffusion XX itself. To this aim, we use annealed technics.Comment: 38 pages, new version, merged with hal-00013040 (arXiv:math/0511053), with some additional result

    Cross-Sectional Study of Toxoplasma gondii Infection in Pig Farms in England

    Get PDF
    Ingestion of undercooked meat has been proposed as an important source of human Toxoplasma gondii infection. To ascertain the contribution of meat consumption to the risk of human infection, estimates of the prevalence of infection in meat-producing animals are required. A cross-sectional study was conducted to assess T. gondii infection in pigs raised in England, to identify risk factors for infection, and to compare performance of two serological tests: modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA). Blood samples from 2071 slaughter pigs originating from 131 farms were collected and 75 (3.6%) were found to be positive by MAT. Positive pigs originated from 24 farms. A subset of samples (n = 492) were tested using ELISA, and a significant disagreement (p = 50% probability of having at least one infected pig (n = 5, 6.8%) and (2) >= 10% probability (n = 15, 20.5%). Data on putative risk factors were obtained for 73 farms. Using a 10% cutoff, the relative risk (RR) of infection was higher in farms where cats have direct access to pigs' food (RR = 2.6; p = 0.04), pigs have outdoor access (RR = 3.0; p = 0.04), and farms keeping <= 200 pigs (RR = 3.9; p = 0.02), with strong collinearity between the three variables. The findings suggest a low level of T. gondii infection in the farms studied, most of which are likely to send to slaughter batches comprising 100% uninfected pigs. These results provide key inputs to quantitatively assess the T. gondii risk posed by pork to consumers

    Intraepithelial and Interstitial Deposition of Pathological Prion Protein in Kidneys of Scrapie-Affected Sheep

    Get PDF
    Prions have been documented in extra-neuronal and extra-lymphatic tissues of humans and various ruminants affected by Transmissible Spongiform Encephalopathy (TSE). The presence of prion infectivity detected in cervid and ovine blood tempted us to reason that kidney, the organ filtrating blood derived proteins, may accumulate disease associated PrPSc. We collected and screened kidneys of experimentally, naturally scrapie-affected and control sheep for renal deposition of PrPSc from distinct, geographically separated flocks. By performing Western blot, PET blot analysis and immunohistochemistry we found intraepithelial (cortex, medulla and papilla) and occasional interstitial (papilla) deposition of PrPSc in kidneys of scrapie-affected sheep. Interestingly, glomerula lacked detectable signals indicative of PrPSc. PrPSc was also detected in kidneys of subclinical sheep, but to significantly lower degree. Depending on the stage of the disease the incidence of PrPSc in kidney varied from approximately 27% (subclinical) to 73.6% (clinical) in naturally scrapie-affected sheep. Kidneys from flocks without scrapie outbreak were devoid of PrPSc. Here we demonstrate unexpectedly frequent deposition of high levels of PrPSc in ovine kidneys of various flocks. Renal deposition of PrPSc is likely to be a pre-requisite enabling prionuria, a possible co-factor of horizontal prion-transmission in sheep

    Transmission of sheep-bovine spongiform encephalopathy to pigs

    Get PDF
    Experimental transmission of the bovine spongiform encephalopathy (BSE) agent has been successfully reported in pigs inoculated via three simultaneous distinct routes (intracerebral, intraperitoneal and intravenous). Sheep derived BSE (Sh-BSE) is transmitted more efficiently than the original cattle-BSE isolate in a transgenic mouse model expressing porcine prion protein. However, the neuropathology and distribution of Sh-BSE in pigs as natural hosts, and susceptibility to this agent, is unknown. In the present study, seven pigs were intracerebrally inoculated with Sh-BSE prions. One pig was euthanized for analysis in the preclinical disease stage. The remaining six pigs developed neurological signs and histopathology revealed severe spongiform changes accompanied by astrogliosis and microgliosis throughout the central nervous system. Intracellular and neuropil-associated pathological prion protein (PrPSc) deposition was consistently observed in different brain sections and corroborated by Western blot. PrPSc was detected by immunohistochemistry and enzyme immunoassay in the following tissues in at least one animal: lymphoid tissues, peripheral nerves, gastrointestinal tract, skeletal muscle, adrenal gland and pancreas. PrPSc deposition was revealed by immunohistochemistry alone in the retina, optic nerve and kidney. These results demonstrate the efficient transmission of Sh-BSE in pigs and show for the first time that in this species propagation of bovine PrPSc in a wide range of peripheral tissues is possible. These results provide important insight into the distribution and detection of prions in non-ruminant animals

    Transmission of scrapie prions to primate after an extended silent incubation period

    Get PDF
    Citation: Comoy, E. E., Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand, V., . . . Deslys, J. P. (2015). Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports, 5. doi:10.1038/srep11573Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie

    Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

    Get PDF
    Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed

    Prions in Milk from Ewes Incubating Natural Scrapie

    Get PDF
    Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain. However, a recently published study brought the first evidence of the presence of prions in mammary secretions from scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However, bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the highest per ml infectious titre measured was found to be equivalent to that contained in 6 µg of a posterior brain stem from a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with milk products from ovine and other TSE-susceptible dairy species

    The emergence of classical BSE from atypical/Nor98 scrapie

    Get PDF
    Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE

    Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy

    Get PDF
    The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (∼70% versus ∼10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrPres type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance
    • …
    corecore