36 research outputs found

    The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones

    Get PDF
    Directed axonal growth depends on correct coordination of the actin and microtubule cytoskeleton in the growth cone. However, despite the relatively large number of proteins implicated in actin−microtubule crosstalk, the mechanisms whereby actin polymerization is coupled to microtubule stabilization and advancement in the peripheral growth cone remained largely unclear. Here, we identified the formin Dishevelled-associated activator of morphogenesis (DAAM) as a novel factor playing a role in concerted regulation of actin and microtubule remodeling in Drosophila melanogaster primary neurons. In vitro, DAAM binds to F-actin as well as to microtubules and has the ability to crosslink the two filament systems. Accordingly, DAAM associates with the neuronal cytoskeleton, and a significant fraction of DAAM accumulates at places where the actin filaments overlap with that of microtubules. Loss of DAAM affects growth cone and microtubule morphology, and several aspects of microtubule dynamics; and biochemical and cellular assays revealed a microtubule stabilization activity and binding to the microtubule tip protein EB1. Together, these data suggest that, besides operating as an actin assembly factor, DAAM is involved in linking actin remodeling in filopodia to microtubule stabilization during axonal growth

    Biochemical Activities of the Wiskott-Aldrich Syndrome Homology Region 2 Domains of Sarcomere Length Short.

    Get PDF
    Drosophila melanogaster Sarcomere Length Short (SALS) is a recently identified Wiskott - Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer : filament equilibrium towards monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin-, or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning

    A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating

    Get PDF
    Store-operated Ca2+ entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca2+ sensors with calcium release–activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20–amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels

    Quasiparticle interference and strong electron-mode coupling in the quasi-one-dimensional bands of Sr2RuO4

    Get PDF
    The single-layered ruthenate Sr2_2RuO4_4 has attracted a great deal of interest as a spin-triplet superconductor with an order parameter that may potentially break time reversal invariance and host half-quantized vortices with Majorana zero modes. While the actual nature of the superconducting state is still a matter of controversy, it has long been believed that it condenses from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunneling spectroscopy (FT-STS) and momentum resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr2_2RuO4_4. Our high-resolution FT-STS data show signatures of the \beta-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr2_2RuO4_4 is that of a 'correlated metal' where correlations are strengthened by the quasi 1D nature of the bands. In addition, kinks at energies of approximately 10meV, 38meV and 70meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi 1D bands may provide important information for understanding the superconducting state. This work opens up a unique approach to revealing the superconducting order parameter in this compound

    Az egészségügyi törvényben leírt betegjogok ismerete, annak a mindennapokban való alkalmazása várandóság, szülés, gyermekágy idején.

    No full text
    INST: L_135Szakdolgozatom témájául a szülő nők alapvető jogai: a szülés-születés élményét befolyásoló emberi jogokat választottam. Kutatásomban azt vizsgáltam, hogy a hazai szülészeti ellátórendszer milyen tájékozódási lehetőségeket biztosít az egészségügyi törvényben lefektetett betegjogokról a leendő anyák számára és a tudatos készülődés vagy éppen az információhiány mennyiben befolyásolja a szülés kimenetelét

    A dishevelled-associated activator of morphogenesis formin szerepe az aktin és mikrotubulus sejtváz dinamikai szabályozásában

    No full text
    Essential components of the eukaryotic cells are the polymer networks built from protein subunits; including microfilaments (or actin filaments, AF), intermediate filaments (IF) and microtubules (MT). These cytoskeletal protein arrays have fundamental roles in virtually all cellular functions; including but not limited to cell division, motility, adhesion, signaling, endocytic trafficking and transport. Health relies on proper cellular functionality governed by the spatiotemporal regulation of the morphology and dynamics of these polymer networks, which is orchestrated by a large repertoire of associated proteins. Therefore, understanding the functional and structural principles of the regulation of these cytoskeletal polymers is basic for medicine and life sciences
    corecore