202 research outputs found

    Dicer1 is required for pigment cell and craniofacial development in zebrafish.

    Get PDF
    The multidomain RNase III endoribonuclease DICER is required for the generation of most functional microRNAs (miRNAs). Loss of Dicer affects developmental processes at different levels. Here, we characterized the zebrafish Dicer1 mutant, dicer1sa9205, which has a single point mutation induced by N-ethyl-N-nitrosourea mutagenesis. Heterozygous dicer1sa9205 developed normally, being phenotypically indistinguishable from wild-type siblings. Homozygous dicer1sa9205 mutants display smaller eyes, abnormal craniofacial development and aberrant pigmentation. Reduced numbers of both iridophores and melanocytes were observed in the head and ventral trunk of dicer1sa9205 homozygotes; the effect on melanocytes was stronger and detectable earlier in development. The expression of microphthalmia-associated transcription factor a (mitfa), the master gene for melanocytes differentiation, was enhanced in dicer1-depleted fish. Similarly, the expression of SRY-box containing gene 10 (sox10), required for mitfa activation, was higher in mutants than in wild types. In silico and in vivo analyses of either sox10 or mitfa 3'UTRs revealed conserved potential miRNA binding sites likely involved in the post-transcriptional regulation of both genes. Based on these findings, we propose that dicer1 participates in the gene regulatory network governing zebrafish melanocyte differentiation by controlling the expression of mitfa and sox10

    Fishing the Molecular Bases of Treacher Collins Syndrome

    Get PDF
    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development

    Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm

    Get PDF
    The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of (Formula presented.) (Formula presented.) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi

    Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization

    Get PDF
    Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape

    Searches After Gravitational-waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo's Third Observing Run

    Get PDF
    We present Searches After Gravitational-waves Using ARizona Observatories (SAGUARO), a comprehensive effort dedicated to the discovery and characterization of optical counterparts to gravitational wave (GW) events. SAGUARO utilizes ground-based facilities ranging from 1.5m to 10m in diameter, located primarily in the Northern Hemisphere. We provide an overview of SAGUARO's telescopic resources, pipeline for transient detection, and database for candidate visualization. We describe SAGUARO's discovery component, which utilizes the 55~deg2^2 field-of-view optical imager on the Mt. Lemmon 1.5m telescope, reaching limits of 21.3\approx 21.3~AB mag while rapidly tiling large areas. We also describe the follow-up component of SAGUARO, used for rapid vetting and monitoring of optical candidates. With the onset of Advanced LIGO/Virgo's third observing run, we present results from the first three SAGUARO searches following the GW events S190408an, S190425z and S190426c, which serve as a valuable proof-of-concept of SAGUARO. We triggered and searched 15, 60 and 60 deg2^{2} respectively, 17.6, 1.4 and 41.8 hrs after the initial GW alerts. We covered 7.8, 3.0 and 5.1\% of the total probability within the GW event localizations, reaching 3σ\sigma limits of 19.8, 21.3 and 20.8 AB mag, respectively. Although no viable counterparts associated with these events were found, we recovered 6 known transients and ruled out 5 potential candidates. We also present Large Binocular Telescope spectroscopy of PS19eq/SN2019ebq, a promising kilonova candidate that was later determined to be a supernova. With the ability to tile large areas and conduct detailed follow-up, SAGUARO represents a significant addition to GW counterpart searches.Comment: 16 pages, 7 figures, 1 table. Accepted to ApJ

    Customer values and CSR image in the banking industry.

    Get PDF
    ABSTRACT: The authors analyse the role that collectivism and novelty seeking play in the formation process of corporate social responsibility (CSR) image in the Spanish banking industry. Two multisampling analyses of a structural equation model are performed on a sample of 1124 customers. The findings of the article allow the authors to anticipate CSR image based on (i) the congruence between the company and its CSR initiatives, (ii) the attribution of motivations for the company to implement CSR and (iii) corporate credibility in developing CSR initiatives. The findings also show that collectivists and innovative customers process information differently to individualists and conservative customers

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    CEERS Key Paper. V. Galaxies at 4 < z < 9 Are Bluer than They Appear-Characterizing Galaxy Stellar Populations from Rest-frame ∼1 μm Imaging

    Get PDF
    We present results from the Cosmic Evolution Early Release Survey on the stellar population parameters for 28 galaxies with redshifts 4 &lt; z &lt; 9 using imaging data from the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) combined with data from the Hubble Space Telescope and the Spitzer Space Telescope. The JWST/MIRI 5.6 and 7.7 μm data extend the coverage of the rest-frame spectral energy distribution to nearly 1 μm for galaxies in this redshift range. By modeling the galaxies’ SEDs the MIRI data show that the galaxies have, on average, rest-frame UV (1600 Å)—I-band colors 0.4 mag bluer than derived when using photometry that lacks MIRI. Therefore, the galaxies have lower ratios of stellar mass to light. The MIRI data reduce the stellar masses by 〈 Δ log M * 〉 = 0.25 dex at 4 &lt; z &lt; 6 and 0.37 dex at 6 &lt; z &lt; 9. This also reduces the star formation rates (SFRs) by 〈ΔlogSFR〉 = 0.14 dex at 4 &lt; z &lt; 6 and 0.27 dex at 6 &lt; z &lt; 9. The MIRI data also improve constraints on the allowable stellar mass formed in early star formation. We model this using a star formation history that includes both a “burst” at z f = 100 and a slowly varying (“delayed-τ”) model. The MIRI data reduce the allowable stellar mass by 0.6 dex at 4 &lt; z &lt; 6 and by ≈1 dex at 6 &lt; z &lt; 9. Applying these results globally, this reduces the cosmic stellar-mass density by an order of magnitude in the early Universe (z ≈ 9). Therefore, observations of rest-frame ≳1 μm are paramount for constraining the stellar-mass buildup in galaxies at very high redshifts.</p
    corecore