12 research outputs found

    The uses of genome-wide yeast mutant collections

    Get PDF
    We assess five years of usage of the major genome-wide collections of mutants from Saccharomyces cerevisiae: single deletion mutants, double mutants conferring 'synthetic' lethality and the 'TRIPLES' collection of mutants obtained by random transposon insertion. Over 100 experimental conditions have been tested and more than 5,000 novel phenotypic traits have been assigned to yeast genes using these collections

    The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer:Targets for Effective Therapy with 3-Bromopyruvate

    Get PDF
    This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the “Warburg effect” and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the “Warburg effect”, and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the “Warburg effect”, i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as “multiple myeloma”. Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development

    The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer:Targets for Effective Therapy with 3-Bromopyruvate

    Get PDF
    This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the “Warburg” and “Crabtree” effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the “Warburg effect” and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the “Warburg effect”, and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the “Warburg effect”, i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as “multiple myeloma”. Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development

    Efflux-Mediated Antifungal Drug Resistance†

    No full text
    Summary: Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps

    Structure and mechanism of the ECF-type ABC transporter for thiamin

    Get PDF
    Guus Erkens’ PhD thesis is about the thiamin (vitamin B1) transport protein ThiT from the bacterium Lactococcus lactis. During his research project he has investigated the recognition of thiamin by ThiT. Also he has determined the three-dimensional structure of ThiT using X-ray crystallography. These results may provide a starting point for the development of antibiotics. The uptake of vitamins requires specific transport proteins residing in the cell membrane. Studying membrane proteins is notoriously difficult. Our knowledge of these protein mechanisms is therefore limited. Alike humans and other organisms bacteria depend on vitamins for their survival. Many bacteria are capable of producing vitamins but often depend on the uptake of vitamins from their environment as well. The determination of the three-dimensional structure of a membrane protein is technically very challenging. Therefore very few membrane protein structures are available. The results presented in this thesis have yielded great insight in the mechanism of ThiT and in vitamin transport in general. Proteins are constructed of long chains folded in a complex three-dimensional pattern. Their function is largely determined by this pattern. In co-operation with other researchers more vitamin transport proteins similar to ThiT have been identified. These findings have lead to a more detailed biochemical study of ThiT. After purifying the protein from Lactococcus lactis cell membranes, the interaction of ThiT with thiamin could be investigated. Thiamin binding to ThiT turned out to be of a very high affinity. Given these results Guus Erkens concluded that high affinity binding allows bacteria to take up thiamin when it is available in very low concentrations.
    corecore