1,054 research outputs found

    Statistical Signs of Social Influence on Suicides

    Full text link
    Certain currents in sociology consider society as being composed of autonomous individuals with independent psychologies. Others, however, deem our actions as strongly influenced by the accepted standards of social behavior. The later view was central to the positivist conception of society when in 1887 \'Emile Durkheim published his monograph Suicide (Durkheim, 1897). By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the connections (or the lack of them) between people and society. Under the same framework, Durkheim considered that crime is bound up with the fundamental conditions of all social life and serves a social function. In this sense, and regardless of its extremely deviant nature, crime events are somehow capable to release certain social tensions and so have a purging effect in society. The social effect on the occurrence of homicides has been previously substantiated (Bettencourt et al., 2007; Alves et al., 2013), and confirmed here, in terms of a superlinear scaling relation: by doubling the population of a Brazilian city results in an average increment of 135 % in the number of homicides, rather than the expected isometric increase of 100 %, as found, for example, for the mortality due to car crashes. Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior between the number of suicides and city population, with allometric power-law exponents, β=0.836±0.009\beta = 0.836 \pm 0.009 and 0.870±0.0020.870 \pm 0.002, for all cities in Brazil and US, respectively. The fact that the frequency of suicides is disproportionately small for larger cities reveals a surprisingly beneficial aspect of living and interacting in larger and more complex social networks.Comment: 7 pages, 4 figure

    Characterization of decavanadate and decaniobate solutions by Raman spectroscopy

    Get PDF
    The decaniobate ion, (Nb10 = [Nb10O28]6−) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28]6−), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10 show that this vanadate species dominates up to pH 6.45 whereas it remains detectable until pH 8.59, which is an important range for biochemistry. Similarly, Nb10 is present between pH 5.49 and 9.90 and this species remains detectable in solution up to pH 10.80. V10 dissociates at most pH values into smaller tetrahedral vanadate oligomers such as V1 and V2, whereas Nb10 dissociates into Nb6 under mildly (10 > pH > 7.6) or highly alkaline conditions. Solutions of V10 and Nb10 are both kinetically stable under basic pH conditions for at least two weeks and at moderate temperature. The Raman method provides a means of establishing speciation in the difficult niobate system and these findings have important consequences for toxicology activities and pharmacological applications of vanadate and niobate polyoxometalates

    Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca2+-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition

    Get PDF
    Recently we demonstrated that the decavanadate (V10) ion is a stronger Ca2+-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V10 interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb10 = Nb10O28]6−, is a useful tool in deducing the interaction and the non-competitive Ca2+-ATPase inhibition by the decavanadate ion [V10 = V10O28]6−. Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca2+- ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V10, Nb10 and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V10 and Nb10 decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V10 to inhibit the Ca2+- ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.MA thanks CCMAR; LAEBC and MPMM thank QFM-UC for financial support. CAO is grateful for a QEII fellowship and Discovery Project grant (DP110105530) from the Australian Research Council. WHC acknowledges support from the U.S. Department of Energy Office of Basic Energy Science via grant DE-FG02-05ER15693, the National Science Foundation via EAR-0814242 and an NSF CCI grant through the Center for Sustainable Materials Chemistry, number CHE-1102637

    Como los estudiantes de la formación inicial del profesorado perciben y tratan la evaluación formativa y compartida

    Get PDF
    El punto de partida de este estudio fue la estancia de dos meses de un estudiante portugués de doctorado interesado en profundizar su conocimiento sobre los procesos de evaluación en una facultad en España. Este trabajo pretende captar los entendimientos y las valoraciones que los estudiantes otorgan a las evaluaciones formativas y compartidas (EFyC) realizadas por el tercer autor (1º y 3º curso, Grado de Maestro en Educación Infantil). Ocho estudiantes con diferentes niveles de participación, interés e implicación fueron seleccionados. Las entrevistas semiestructuradas individuales fueron analizadas mediante análisis temático. Los estudiantes entienden adecuadamente los procesos desarrollados en esta asignatura, aunque tengan diferentes interpretaciones sobre los mismos. Ellos identifican ventajas en los procesos de EFyC, tanto como alumnos como en su futuro como maestros. Apuntan algunas dificultades para emplearlos y una gran carga de trabajo. Los estudiantes, han dicho que si estuviesen como maestros en la escuela aplicarían estas evaluaciones

    Origin of Spin Incommensurability in Hole-doped S=1 Y2−xCaxBaNiO5\rm Y_{2-x}Ca_x Ba Ni O_5 Chains

    Full text link
    Spin incommensurability has been recently experimentally discovered in the hole-doped Ni-oxide chain compound Y2−xCaxBaNiO5\rm Y_{2-x}Ca_x Ba Ni O_5 (G. Xu {\it al.}, Science {\bf 289}, 419 (2000)). Here a two orbital model for this material is studied using computational techniques. Spin IC is observed in a wide range of densities and couplings. The phenomenon originates in antiferromagnetic correlations ``across holes'' dynamically generated to improve hole movement, as it occurs in the one-dimensional Hubbard model and in recent studies of the two-dimensional extended t-J model. The close proximity of ferromagnetic and phase-separated states in parameter space are also discussed.Comment: RevTex, 4 pages, 4 figures (eps

    Antimicrobial, Antiproliferative and Proapoptotic Activities of Extract, Fractions and Isolated Compounds from the Stem of Erythroxylum caatingae Plowman

    Get PDF
    In the study, we have examined the antitumor and antimicrobial activities of the methanol extract, the fractions, a fraction of total alkaloids and two alkaloids isolated from the stem of Erythroxylum caatingae Plowman. All test fractions, except the hexane fractions, showed antimicrobial activity on gram-positive bacteria and fungi. The acetate: methanol (95:5), acetate, chloroform and hexane fractions show the highest cytotoxicity activity against the NCI-H292, HEp-2 and K562 cell lines using MTT. The absence of hemolysis in the erythrocytes of mice was observed in these fractions and 6β-Benzoyloxy-3α-(3,4,5- trimethoxybenzoyloxy) tropane (catuabine B). Staining with Annexin V-FITC and JC-1 was used to verify the mechanism of action of the compounds of E. caatingae that showed cytotoxicity less than 30 μg/mL in leukemic cells. After 48 h of incubation, we observed that the acetate: methanol (95:5), acetate, and chloroform fractions, as well as the catuabine B, increased in the number of cells in early apoptosis, from 53.0 to 74.8%. An analysis of the potential of the mitochondrial membrane by incorporation of JC-1 showed that most cells during incubation of the acetate: methanol (95:5) and acetate fractions (63.85 and 59.2%) were stained, suggesting the involvement of an intrinsic pathway of apoptosis

    Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: Effect of catalase overexpression

    Get PDF
    AbstractThe mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids
    • …
    corecore