78 research outputs found

    Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk

    Get PDF
    AT1 angiotensin receptor (AT1R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT1R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT1R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT1R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT1R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT1R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT1R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases. © 201

    Acquired Triazole Resistance Alters Pathogenicity-Associated Features in Candida auris in an Isolate-Dependent Manner

    Get PDF
    Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors

    GREY MATTER AIROPHY IN PATIENTS SUFFERING FROM MULTIPLE SCLEROSIS

    Get PDF
    White matter lesions are defining characteristics of multiple sclerosis (MS), whereas grey matter involvement is a less recognised attribute. Recent investigations using dedicated imaging approaches have made it possible to depict cortical lesions. Additionally, grey matter atrophy may be estimated using various methods. Several studies have suggested that grey matter atrophy closely correlates to clinical disability. In this review we have collected information on grey matter atrophy in MS and the effect of disease modifying therapies upon brain atrophy

    Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.

    Get PDF
    The role of the highly-conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by introducing single, double and triple alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (~85% of wild-type CB1R (CB1R-WT)). Moreover, this mutant showed impaired beta-arrestin binding in response to agonist stimulus, although its basal beta-arrestin binding was enhanced. More strikingly, the double mutant CB1R-D3.49A/R3.50A was biased toward beta-arrestins, as it gained a robustly increased beta-arrestin1 and beta-arrestin2 binding ability compared to the wild-type receptor, while its G protein activation was decreased. In contrast, the double mutant CB1R-R3.50A/Y3.51A proved to be G protein-biased, as it was practically unable to recruit beta-arrestin2 in response to agonist stimulus, while still activating G proteins, although at a reduced level (~75% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed good correlation with their beta-arrestin binding ability but not with their G protein activation or inhibition of cAMP accumulation. Our results suggest that G protein-activation and beta-arrestin-binding of the CB1R are mediated by distinct receptor conformations and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G protein- and beta-arrestin2-mediated functions of CB1R

    Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease

    Get PDF
    Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain.We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years.At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%).In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets. (Funded by Amgen; FOURIER ClinicalTrials.gov number, NCT01764633 .)

    Inflammation leads through PGE/EP3 signaling to HDAC5/MEF2-dependent transcription in cardiac myocytes

    Get PDF
    The myocyte enhancer factor 2 (MEF2) regulates transcription in cardiac myocytes and adverse remodeling of adult hearts. Activators of G protein-coupled receptors (GPCRs) have been reported to activate MEF2, but a comprehensive analysis of GPCR activators that regulate MEF2 has to our knowledge not been performed. Here, we tested several GPCR agonists regarding their ability to activate a MEF2 reporter in neonatal rat ventricular myocytes. The inflammatory mediator prostaglandin E2 (PGE2) strongly activated MEF2. Using pharmacological and protein-based inhibitors, we demonstrated that PGE2 regulates MEF2 via the EP3 receptor, the betagamma subunit of Gi/o protein and two concomitantly activated downstream pathways. The first consists of Tiam1, Rac1, and its effector p21-activated kinase 2, the second of protein kinase D. Both pathways converge on and inactivate histone deacetylase 5 (HDAC5) and thereby de-repress MEF2. In vivo, endotoxemia in MEF2-reporter mice induced upregulation of PGE2 and MEF2 activation. Our findings provide an unexpected new link between inflammation and cardiac remodeling by de-repression of MEF2 through HDAC5 inactivation, which has potential implications for new strategies to treat inflammatory cardiomyopathies

    Angiotensin type 1A receptor regulates β-arrestin binding of the β2-adrenergic receptor via heterodimerization

    Get PDF
    Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic receptor (β2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on β-arrestin coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and β2AR, and suggest that enhanced β-arrestin2 binding to β2AR can contribute to the pharmacological effects of biased AT1R agonists. © 201
    corecore