7 research outputs found

    Neck linker docking coordinates the kinetics of kinesin's heads

    Get PDF
    Conventional kinesin is a two-headed homodimeric motor protein, which is able to walk along microtubules processively by hydrolyzing ATP. Its neck linkers, which connect the two motor domains and can undergo a docking/undocking transition, are widely believed to play the key role in the coordination of the chemical cycles of the two motor domains and, consequently, in force production and directional stepping. Although many experiments, often complemented with partial kinetic modeling of specific pathways, support this idea, the ultimate test of the viability of this hypothesis requires the construction of a complete kinetic model. Considering the two neck linkers as entropic springs that are allowed to dock to their head domains and incorporating only the few most relevant kinetic and structural properties of the individual heads, here we develop the first detailed, thermodynamically consistent model of kinesin that can (i) explain the cooperation of the heads (including their gating mechanisms) during walking and (ii) reproduce much of the available experimental data (speed, dwell time distribution, randomness, processivity, hydrolysis rate, etc.) under a wide range of conditions (nucleotide concentrations, loading force, neck linker length and composition, etc.). Besides revealing the mechanism by which kinesin operates, our model also makes it possible to look into the experimentally inaccessible details of the mechanochemical cycle and predict how certain changes in the protein affect its motion.Comment: to appear in the Biophysical Journa

    The relevance of neck linker docking in the motility of kinesin

    Full text link
    Conventional kinesin is a motor protein, which is able to walk along a microtubule processively. The exact mechanism of the stepping motion and force generation of kinesin is still far from clear. In this paper we argue that neck linker docking is a crucial element of this mechanism, without which the experimentally observed dwell times of the steps could not be explained under a wide range of loading forces. We also show that the experimental data impose very strict constraints on the lengths of both the neck linker and its docking section, which are compatible with the known structure of kinesin.Comment: Accepted for publication in BioSystems as part of the proceedings of BIOCOMP 200

    Using intra-breath oscillometry in obesity hypoventilation syndrome to detect tidal expiratory flow limitation: a potential marker to optimize CPAP therapy

    No full text
    Abstract Background Continuous positive airway pressure (CPAP) therapy has profound effects in obesity hypoventilation syndrome (OHS). Current therapy initiation focuses on upper airway patency rather than the assessment of altered respiratory mechanics due to increased extrapulmonary mechanical load. Methods We aimed to examine the viability of intra-breath oscillometry in optimizing CPAP therapy for OHS. We performed intra-breath oscillometry at 10 Hz in the sitting and supine positions, followed by measurements at increasing CPAP levels (none-5-10-15-20 cmH2O) in awake OHS patients. We plotted intra-breath resistance and reactance (Xrs) values against flow (V’) and volume (V) to identify tidal expiratory flow limitation (tEFL). Results Thirty-five patients (65.7% male) completed the study. We found a characteristic looping of the Xrs vs V’ plot in all patients in the supine position revealing tEFL: Xrs fell with decreasing flow at end-expiration. Intra-breath variables representing expiratory decrease of Xrs became more negative in the supine position [end-expiratory Xrs (mean ± SD): -1.9 ± 1.8 cmH2O·s·L− 1 sitting vs. -4.2 ± 2.2 cmH2O·s·L− 1 supine; difference between end-expiratory and end-inspiratory Xrs: -1.3 ± 1.7 cmH2O·s·L− 1 sitting vs. -3.6 ± 2.0 cmH2O·s·L− 1 supine, p < 0.001]. Increasing CPAP altered expiratory Xrs values and loop areas, suggesting diminished tEFL (p < 0.001). ‘Optimal CPAP’ value (able to cease tEFL) was 14.8 ± 4.1 cmH2O in our cohort, close to the long-term support average of 13.01(± 2.97) cmH2O but not correlated. We found no correlation between forced spirometry values, patient characteristics, apnea-hypopnea index and intra-breath oscillometry variables. Conclusions tEFL, worsened by the supine position, can be diminished by stepwise CPAP application in most patients. Intra-breath oscillometry is a viable method to detect tEFL during CPAP initiation in OHS patients and tEFL is a possible target for optimizing therapy in OHS patients

    Airway dynamics in COPD patients by within-breath impedance tracking: effects of continuous positive airway pressure

    No full text
    Tracking of the within-breath changes of respiratory mechanics using the forced oscillation technique may provide outcomes that characterise the dynamic behaviour of the airways during normal breathing. We measured respiratory resistance (Rrs) and reactance (Xrs) at 8 Hz in 55 chronic obstructive pulmonary disease (COPD) patients and 20 healthy controls, and evaluated Rrs and Xrs as functions of gas flow (V′) and volume (V) during normal breathing cycles. In 12 COPD patients, additional measurements were made at continuous positive airway pressure (CPAP) levels of 4, 8, 14 and 20 hPa. The Rrs and Xrs versus V′ and V relationships displayed a variety of loop patterns, allowing characterisation of physiological and pathological processes. The main outcomes emerging from the within-breath analysis were the Xrs versus V loop area (AXV) quantifying expiratory flow limitation, and the tidal change in Xrs during inspiration (ΔXI) reflecting alteration in lung inhomogeneity in COPD. With increasing CPAP, AXV and ΔXI approached the normal ranges, although with a large variability between individuals, whereas mean Rrs remained unchanged. Within-breath tracking of Rrs and Xrs allows an improved assessment of expiratory flow limitation and functional inhomogeneity in COPD; thereby it may help identify the physiological phenotypes of COPD and determine the optimal level of respiratory support
    corecore