29 research outputs found

    REPRESENTAÇÃO GRÁFICA ARQUITETÔNICA DIGITAL: AVALIAÇÃO DO USO DE NOVAS ABORDAGENS DIDÁTICAS PARA MELHORIA NO PROCESSO DE ENSINO-APRENDIZAGEM

    Get PDF
    A representação da forma é imprescindível para qualquer área que envolva criação de artefatos, uma vez que sem ela o projeto não passa de uma ideia no campo mental. Porém para que a ideia seja materializada é preciso representá-la graficamente. Para isso é necessário que o projetista tenha capacidade de visualização espacial desenvolvida, o que tem se mostrado ser uma tarefa complexa. Ao longo da história, educadores têm se debruçado sobre estratégias didático-metodológicas a fim de ajudar nesse processo. Entre eles, Tamashiro defende que o ensino de desenho arquitetônico deve trabalhar com o uso do Conhecimento Técnico-Construtivo (CTC) para um melhor desenvolvimento das habilidades de representação. O presente trabalho toma como problema de pesquisa as dificuldades de visualização espacial dos estudantes no processo de representação gráfica do projeto arquitetônico. Foi realizado um experimento didático utilizando o CTC com estudantes de Arquitetura e Urbanismo, da Universidade Federal de Pernambuco. O experimento exigiu que os discentes realizassem o levantamento de escadas e representassem graficamente suas projeções mongeanas em meio digital, utilizando-se das regras do desenho técnico. Os resultados mostram que o CTC contribuiu para o desenvolvimento da capacidade de visualização espacial e, consequentemente, para o processo de projeto e suas representações gráficas

    Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice

    No full text
    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.Depto. de Bioquímica y Biología MolecularFac. de MedicinaTRUEpu

    Agmatine Induces Nrf2 and Protects Against Corticosterone Effects in Hippocampal Neuronal Cell Line

    No full text
    et al.Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of l-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.This study was supported by the FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net/CNPq),” CNPq, FAPESC, CAPES/PDSE, CAPES/PROCAD, Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) Project/PRONEX Program CNPq/FAPESC (Brazil) to ALSR. The 8th Convocatoria de proyectos de Cooperación Interuniversitaria UAM-Santander con America Latina, Spanish Ministry of Economy and Competence Ref. SAF2012-32223, and Spanish Ministry of Health (Instituto de Salud Carlos III) RETICS-RD06/0026 to MGL.Peer Reviewe

    Data supporting the rat brain sample preparation and validation assays for simultaneous determination of 8 neurotransmitters and their metabolites using liquid chromatography–tandem mass spectrometry

    Get PDF
    The data presented in this article supports the rat brain sample preparation procedure previous to its injection into the liquid chromatography–tandem mass spectrometry (LC–MS/MS) system to monitor levels of adrenaline, noradrenaline, glutamic acid, γ-aminobutyric acid, dopamine, 5-hydroxytryptamine, 5-hydroxyindole acetic acid, and 3-methoxy-4-hydroxyphenylglycol. In addition, we describe the method validation assays (such as calibration curve, lower limit of quantification, precision and accuracy intra- and inter-day, selectivity, extraction recovery and matrix effect, stability, and carry-over effect) according to the United States Food and Drug Administration and European Medicine Agency to measure in one step different neurotransmitters and their metabolites. The data supplied in this article is related to the research study entitled: “Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: application to the murine Nrf2 model of depression” (Wojnicz et al. 2016) [1]

    Agmatine, by improving neuroplasticity markers and inducing Nrf2, prevents corticosterone-induced depressive-like behavior in mice

    No full text
    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (−/−)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine’s ability to produce an antidepressant-like effect was abolished in Nrf2 (−/−) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.This work was supported by CNPq, CAPES/PDSE, CAPES/PROCAD, Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) Project/ PRONEX Program CNPq/FAPESC (Brazil) to ALSR. The 8th Convocatoria de proyectos de Cooperación Interuniversitaria UAM-Santander con America Latina, Spanish Ministry of Economy and Competence Ref. SAF2012-32223 to MGL and ALSR. This work was also supported by FIS CA12/00122 to ARN and FPU12/02220 to AW.Peer Reviewe

    Involvement of PI3K, GSK-3β and PPARγ in the antidepressant-like effect of folic acid in the forced swimming test in mice

    No full text
    Preclinical and clinical studies indicate that deficiency in folic acid plays a role in the pathophysiology of depression. Considering that alterations in the signaling pathways that regulate neuroplasticity and cellular survival are implicated in depressive disorders, the present study investigated the involvement of the phosphoinositide 3-kinase (PI3K), glycogen synthase kinase-3 (GSK-3β), and peroxisome proliferator-activated receptor-γ (PPARγ) in the antidepressant-like effect of folic acid in the forced swimming test (FST). The intracerebroventricular (i.c.v.) pre-treatment of mice with LY294002 (10 nmol/site, a PI3K inhibitor) or GW-9662 (1 µg/site, a PPARγ antagonist) prevented the antidepressant-like effect of folic acid (50 mg/kg, p.o.) in the FST. In addition, the administration of subeffective doses of the selective GSK-3β inhibitor, AR-A014418 (3 mg/kg, i.p.), a non-selective GSK-3β inhibitor, lithium chloride (10 mg/kg, p.o) or a PPARγ agonist, rosiglitazone (1 µg/site, i.c.v.) in combination with a subeffective dose of folic acid (10 mg/kg, p.o.) significantly reduced the immobility time in the FST as compared with either drug alone, without altering the locomotor activity. These results indicate that the antidepressant-like effect of folic acid in the FST might be dependent on inhibition of GSK-3β and activation of PPARγ, reinforcing the notion that these are important targets for antidepressant activity.Depto. de Bioquímica y Biología MolecularFac. de FarmaciaFALSEpu
    corecore