18,576 research outputs found

    Dynamical excitation of space-time modes of compact objects

    Get PDF
    We discuss, in the perturbative regime, the scattering of Gaussian pulses of odd-parity gravitational radiation off a non-rotating relativistic star and a Schwarzschild Black Hole. We focus on the excitation of the ww-modes of the star as a function of the width bb of the pulse and we contrast it with the outcome of a Schwarzschild Black Hole of the same mass. For sufficiently narrow values of bb, the waveforms are dominated by characteristic space-time modes. On the other hand, for sufficiently large values of bb the backscattered signal is dominated by the tail of the Regge-Wheeler potential, the quasi-normal modes are not excited and the nature of the central object cannot be established. We view this work as a useful contribution to the comparison between perturbative results and forthcoming ww-mode 3D-nonlinear numerical simulation.Comment: RevTeX, 9 pages, 7 figures, Published in Phys. Rev.

    Emittance measurement study

    Get PDF
    Directional spectral emittance of black body cavitie

    Best clinical practice guidance for conscious sedation of children undergoing dental treatment: an EAPD policy document

    Get PDF
    BACKGROUND: Due to fear and/or behaviour management problems, some children are unable to cooperate for dental treatment using local anaesthesia and psychological support alone. Sedation is required for these patients in order for dentists to be able to deliver high quality, pain-free dental care. The aim of this guideline is to evaluate the efficacy and relative efficacy of conscious sedation agents and dosages for behaviour management in paediatric dentistry and to provide guidance as to which sedative agents should be used. METHODS: These guidelines were developed using a multi-step approach adapted from that outlined by the National Institute for Clinical Excellence (NICE (2020) Developing NICE Guidelines: the manual. https://www.nice.org.uk/process/pmg20/chapter/introduction#main-stages-of-guideline-development. Accessed 7 Oct 2020). Evidence for this guideline was provided from a pre-existing Cochrane review (Ashley et al. Cochrane Database Syst Rev 12:CD003877, 2018) supplemented by an updated search and data extraction up to May 2020. RESULTS: Studies were from 18 different countries and had recruited 4131 participants overall with an average of 70 participants per study. Ages ranged from 0 to 16 years with an average age of 5.6 years across all included studies. A wide variety of drugs or combinations of drugs (n = 38) were used and delivered orally, intranasally, intravenously, rectally, intramuscularly, submucosally, transmucosally or by inhalation sedation. Twenty-four different outcome measures for behaviour were used. The wide range of drug combinations and outcome measures used greatly complicated description and analysis of the data. CONCLUSION: Oral midazolam is recommended for conscious dental sedation. Midazolam delivered via other methods or nitrous oxide/oxygen sedation could be considered, but the evidence for both was very low

    Memory Effect, Rejuvenation and Chaos Effect in the Multi-layer Random Energy Model

    Full text link
    We introduce magnetization to the Multi-layer Random Energy Model which has a hierarchical structure, and perform Monte Carlo simulation to observe the behavior of ac-susceptibility. We find that this model is able to reproduce three prominent features of spin glasses, i.e., memory effect, rejuvenation and chaos effect, which were found recently by various experiments on aging phenomena with temperature variations.Comment: 10 pages, 14 figures, to be submitted to J. Phys. Soc. Jp

    Excitation of the odd-parity quasi-normal modes of compact objects

    Get PDF
    The gravitational radiation generated by a particle in a close unbounded orbit around a neutron star is computed as a means to study the importance of the ww modes of the neutron star. For simplicity, attention is restricted to odd parity (``axial'') modes which do not couple to the neutron star's fluid modes. We find that for realistic neutron star models, particles in unbounded orbits only weakly excite the ww modes; we conjecture that this is also the case for astrophysically interesting sources of neutron star perturbations. We also find that for cases in which there is significant excitation of quadrupole ww modes, there is comparable excitation of higher multipole modes.Comment: 18 pages, 21 figures, submitted to Phys. Rev.

    High-accuracy sampling of saproxylic diversity indicators at regional scales with pheromones: The case of "Elater ferrugineus" (Coleoptera, Elateridae)

    Get PDF
    The rare beetle Elater ferrugineus was sampled at 47 sites in the county of Östergötland, Sweden by means of pheromone-baited traps to assess its value as an indicator species for hollow oak stands rich in rare saproxylic beetle species. In addition, Osmoderma eremita was also sampled with pheromone baits. These data were then compared against species survey data collected at the same sites by pitfall and window traps. Both species co-occur with many Red Listed saproxylic beetles, with E. ferrugineus being a somewhat better indicator for the rarest species. The conservation value of a site (measured as Red List points or number of Red Listed species) increased with the number of specimens of E. ferrugineus and O. eremita caught. Accuracy of sampling by means of pheromone trapping turned out to be radically different for the two model species. E. ferrugineus traps put out during July obtained full accuracy after only 6 days, whereas O. eremita traps needed to be out from early July to mid-August in order to obtain full accuracy with one trap per site. By using E. ferrugineus, or preferably both species, as indicator species, accuracy would increase and costs decrease for saproxylic biodiversity sampling, monitoring and identification of hotspots

    Search for charginos, neutralinos, and gravitinos at LEP

    Get PDF
    The hep-ex data base was decided not to be an appropriate place to make DELPHI notes public. Sorry for the inconvenience.Comment: the paper should not have been made publi

    Gravitational waves from a test particle scattered by a neutron star: Axial mode case

    Get PDF
    Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius R≲3MR \lesssim 3M), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to Phys. Rev.
    • …
    corecore