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We discuss, in the perturbative regime, the scattering of Gaussian pulses of odd-parity gravitational
radiation off a nonrotating relativistic star and a Schwarzschild black hole. We focus on the excitation of
the w-modes of the star as a function of the width b of the pulse and we contrast it with the outcome of a
Schwarzschild black hole of the same mass. For sufficiently narrow values of b, the waveforms are
dominated by characteristic space-time modes. On the other hand, for sufficiently large values of b the
backscattered signal is dominated by the tail of the Regge-Wheeler potential, the quasinormal modes are
not excited and the nature of the central object cannot be established. We view this work as a useful
contribution to the comparison between perturbative results and forthcoming w-mode 3D-nonlinear
numerical simulation.
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I. INTRODUCTION

The pioneering works of Vishveshwara [1], Press [2],
and Davis, Ruffini, and Tiomno [3], unambiguously
showed that a nonspherical gravitational perturbation of a
Schwarzschild black hole is radiated away via exponen-
tially damped harmonic oscillations. These oscillations are
interpreted as space-time vibrational modes. The proper-
ties of these quasinormal modes (QNMs henceforth) of
black holes have been thoroughly studied since then (see,
for example, Refs. [4–6] and references therein).
Relativistic stars can also have space-time vibrational
modes, the so-called w-modes [7]. These modes are purely
relativistic and, contrary to fluid modes, are absent in
Newtonian theory. The fundamental w-mode frequency
of a typical neutron star of radius �10 km and mass
1:4M� is expected to lie in the range of 10–12 kHz and
to have a damping time of �10�4 s [8].

The issue of the excitation of w-modes in astrophysi-
cally motivated scenarios has been deeply investigated in
the literature. Andersson and Kokkotas [9] showed that, in
the odd-parity case, the scattering of a Gaussian pulse of
gravitational waves off a constant density nonrotating star
generates a waveform that, in close analogy with the black
hole case, is characterized by three phases: (i) a precursor,
mainly related to the choice of the initial data and deter-
mined by the backscattering of the background curvature
while the pulse is entering in the gravitational field of the
star; (ii) a burst; (iii) a ring-down phase dominated by
w-modes, whose presence was inferred by looking at the
Fourier spectrum of the signals. Since the star is nonrotat-
ing, the signal eventually dies out with a power-law tail
typical of Schwarzschild space-time [10,11]. Allen and
coworkers [12] and Ruoff [13] addressed, by means of
time-domain perturbative analysis, the same problem in
the even-parity case, focusing on gravitational wave scat-

tering scenarios. They considered a large sample of initial
configurations as well as star models of different compac-
tion. Their main findings were: (i) w-modes are present
only for nonconformally flat initial data (i.e., some radia-
tive field needs to be injected in the system) and (ii) the
strength of the w-mode signal depends on the compaction
of the star. These pioneering studies were later extended or
refined in Refs. [14–24]. In particular, Refs. [14–17] con-
sidered the scattering off the star of particles moving along
open orbits and realized that the w-mode excitation
strongly depends on the orbital parameters: the closer the
turning point of the orbit is to the star (i.e., the higher is the
frequency of the gravitational wave instantaneously emit-
ted by the particle), the larger is the presence of w-modes.
Consistently, Ref. [25] showed that (modulo a simplified
treatment of the star surface) if the source of perturbation is
a spatially extended axisymmetric distribution of fluid
matter (like a quadrupolar shell) plunging on the star, the
w-modes are not excited, but the energy spectrum is domi-
nated by low-frequency contributions due to curvature
backscattering. In addition, Ref. [26] addressed the late-
time decay of the trapped mode for ultracompact, highly
relativistic constant density stars. The presence of trapped
w-modes in stars with a first-order phase transition (a
density discontinuity) was also discussed in Ref. [27].

In this work we analyze the problem of w-modes exci-
tation in relativistic stars (in the perturbative regime) by
emphasizing the analogies with the black hole case. For a
given odd-parity gravitational wave multipole ‘, we con-
sider the scattering of Gaussian pulses of gravitational
radiation of different width b off relativistic stars (either
with constant density or with a polytropic equation of state)
of 1.4 M� and we contrast such signals with those emitted
by a nonrotating black hole of the same mass. We focus on
the excitation of space-time modes as a function of the
width b of the Gaussian. We find that space-times modes
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can be clearly identified only if the Gaussian wave packet
is sufficiently narrow (i.e., small b). On the other hand, for
large wave packets the internal structure of the object is
unaffected by the perturbation, tail effects are dominating
and the gravitational waveforms generated by stars or
black holes are practically identical.

II. NUMERICAL FRAMEWORK

A. Relativistic stars

From the spherically symmetric line element in
Schwarzschild coordinates

 ds2 � �e2�dt2 � e2�dr2 � r2�d�2 � sin2�d’2�; (2.1)

by assuming the stress energy tensor of a perfect fluid as
T�� � �p���u�u� � pg��, where p is the pressure and
� the total energy density of the star, the Einstein equa-
tions reduce to the Tolman-Oppenheimer-Volkoff (TOV)
equations of stellar equilibrium:

 

dm
dr
� 4�r2�; (2.2)

 

d�
dr
�
�m� 4�r3p�

�r2 � 2mr�
; (2.3)

 

dp
dr
� ��p���

d�
dr
: (2.4)

Since we are using Schwarzschild coordinates, we also
have that e�2� � 1� 2m�r�=r, where m�r� is the mass
contained in a sphere of radius r. In order to be solved,
this system of equations needs the specification of an
equation of state (EoS). We use the simplest two: the
constant density EoS and an adiabatic EoS in the form p �
K��. We consider two polytropic models (named A and B)
and two constant energy density models (AC and BC) with
the same compactness. All the models share the same mass
M � 1:4M�, and their specific properties are listed in
Table I. If not differently stated, we use geometrized units
c � G � 1 with M� � 1.

B. Odd-parity perturbations

Odd-parity linear perturbations of black holes and neu-
tron stars (in the absence of external matter source) are
described by a simple linear equation

 @2
t�
�o� � @2

r��
�o� � V�o�‘ ��o� � 0; (2.5)

for a master function ��o� 	 ��o�‘ that is related to the
metric degrees of freedom (see, for example, Ref. [28]).
For a star of radius R, the potential is given by

 V�o�‘ � e2�
�
6m

r3 � 4��p��� � ‘�‘� 1�r2

�
; (2.6)

which reduces to the standard Regge-Wheeler potential for
r > R, where M � m�R� is the total mass and p � � � 0.
The latter holds also for the black hole case. We expressed
Eq. (2.5) using a r� tortoise coordinate defined as
dr�=dr � exp��� ��. This reduces in vacuum to the
Regge-Wheeler tortoise coordinate r� � r�
2M ln�r=�2M� � 1�. The power emitted in gravitational
waves is

 

_E �o� 	
X
‘
2

_E�o�‘ �
X
‘
2

�‘� 2�!

�‘� 2�!
j _��o�‘ j

2; (2.7)

where the overdot stands for coordinate time derivative.

C. Initial data and simulation method

For neutron starts (NS) and black holes Eq. (2.5) is
solved in the time domain as an initial value problem. In
the case of the polytropic EOS, we need first to integrate
numerically the TOV equations (2.2), (2.3), and (2.4) to
compute the potential V�o�‘ . For a given central pressure pc

(see Table I) the TOV equations are integrated numerically
(from the center outward) using a standard fourth-order
Runge-Kutta integration scheme with adaptive step size.

As initial data for (��o�‘ ; @t�
�o�
‘ ) we set up an ingoing

(@t��o� � @r��
�o�) Gaussian pulse of tunable width b

 ��o� �N exp���r� r0�
2=b2�; (2.8)

where N is a normalization constant determined by equat-
ing to one the integral of Eq. (2.8) all over the radial
domain. This is a simple, but sufficiently general, way to
represent a ‘‘distortion’’ of the space-time (whose intimate
origin depends on the particular astrophysical setting), and
to introduce in the system a proper scale through the width
of the Gaussian.

Let us also summarize the basilar elements of our nu-
merical procedure. Equation (2.5) has been discretized on
an evenly spaced grid (in r� for the black hole and in r for
the star) and solved using a standard implementation of the
second-order Lax-Wendroff method as implemented, for
example, in [25]. We have performed convergence tests of
the code which assured a convergence factor of �2. A
resolution of �r� � 0:01 and �r � 0:015 is sufficient to

TABLE I. From up to down the rows report: the polytropic
constant K, the adiabatic index �, the mass of the star M, its
radius R, the central pressure pc, the central total energy density
�c and the compaction parameter M=R, for all the stellar models
considered.

EoS A B AC BC

K 56.16 82.69 — —
� 2 2 — —
M 1.40 1.40 1.40 1.40
R 6.64 9.10 6.64 9.10
pc 8:84
 10�4 1:83
 10�4 2:13
 10�4 4:98
 10�5

�c 3:96
 10�3 1:48
 10�3 1:14
 10�3 4:43
 10�4

M=R 0.21 0.15 0.21 0.15
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be in the convergence regime. Since we have implemented
standard Sommerfeld outgoing boundary conditions (see
Ref. [29] for improved, nonreflecting boundary condi-
tions), we cannot avoid some spurious reflections to
come back from boundaries. To avoid that this effect
contaminates too much the late-time tails of the signals,
we need to choose radial grids sufficiently extended, say
r� 2 ��2000; 2000� and r 2 �0; 2000�.

III. RESULTS

A. Analysis of the waveforms

We analyzed the gravitational wave response of relativ-
istic stars described by the four (two polytropic and two
constant energy density) models in Table I and of a black
hole of the same mass to an impinging gravitational wave
packet of the form (2.8). We focus on the dependence of the
excitation of the star w-modes (and of the black hole
QNMs) ring-down on the width b. The Gaussian is cen-
tered at r0 � 100; the waveforms are extracted at robs �
900 (robs

� � 916) and shown versus observer retarded time
u � t� robs

� . Figure 1 exhibits the waveforms, for model
A, model B and the black hole for b � 2 (top), b � 8
(middle) and b � 20 (bottom). The main panel depicts
the modulus on a logarithmic scale, in order to highlight
the late-time nonoscillatory tail.

Let us first discuss the main features of the signal of
Fig. 1, starting with the ‘‘narrow’’ pulse, b � 2. In the case
of the black hole, the ring-down has the ‘‘standard’’ shape
dominated by the fundamental mode that is quoted in
textbooks. In the case of the stars, a damped harmonic
oscillations due to w-modes appears (we shall make this
statement more precise below). The waveforms show the
common global behavior precursor–burst–ring-down–
tail. The precursor is determined by the choice of initial
data and by the long-range features of the potential; this
implies that, until u ’ 100, the three waveforms are super-
posed. At later times, the short-range structure (burst-ring-
down) becomes apparent. For the black hole the burst is
related to the pulse passing through the peak of Regge-
Wheeler potential. After the pulse the quasiharmonic os-
cillatory regime shows up. When b is increased (b � 8),
the features remain unchanged, but, although the nonoscil-
latory tail is not dominating yet, the amplitude of the
damped oscillation is smaller and lasting for a shorter
time. A further enlargement of the Gaussian causes the
ingoing pulse to be almost completely reflected back by the
‘‘tail’’ of the potential, so that the emerging waveform is
unaffected by the properties of the central object. The
bottom panel of Fig. 1 highlights this effect for b � 20:
no quasinormal oscillations are present. It turns out that the
waveforms are perfectly superposed and any characteristic
signature of the black hole or of the star (for any star
model, see below) disappears. We have checked through
a linear fit that the tail is (asymptotically) in perfect agree-
ment with the Price law: t�2l�3 [10,11].
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FIG. 1 (color online). Dependence of the ring-down phase on
the width b of the Gaussian pulse: for b � 2 (top panel) and b �
8 (middle panel) the process of excitation of the space-time
modes shows the same qualitative features for the black hole and
for the star. The waveforms for b � 20 (bottom panel) show
there is basically no difference between the gravitational wave
signal backscattered from a stars of Table I and from a
Schwarzschild black hole with the same mass.
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The absence of QNMs for large values of b is qualita-
tively explained by means of the following argument (see
also Sec. IX of Ref. [30]): in the frequency domain, the
Gaussian perturbation equation (2.8) is equivalent to a
Gaussian of variance �! �

���
2
p
=b and contains all frequen-

cies. However this means that the amplitudes of the modes
excited by this kind of initial data will be exponentially
suppressed if their frequencies are greater than the one
corresponding to 3 standard deviations, i.e., if their fre-
quency is greater than a sort of effective maximum fre-
quency given by !b

max ’ 3�! � 3
���
2
p
=b. Generally

speaking, we expect to trigger the space-time modes of
the star (or of the black hole) only when b is such that!b

max

is larger than the frequency of the least damped quasinor-
mal mode of the system. In order to show how this argu-
ment works, let us note that we have !2

max ’ 2:12,
!8

max ’ 0:53, !14
max ’ 0:30 and !20

max ’ 0:21. Table II lists
the first six w-modes1 of model A (for ‘ � 2): since the
lowest frequency mode has !12 ’ 0:29, it immediately
follows that for b * 14 the w-mode frequencies cannot
be found in the Fourier spectrum. This argument is con-
firmed by the analysis of the energy spectra, that are
depicted in Fig. 2. The frequency distribution is consistent
with the value!b

max ’ 3
���
2
p
=b and thus the w-modes can be

excited only for b & 14:4. Note that the different ampli-
tudes of the spectra in Fig. 2 are due to the convention used
for the normalization of the initial data.

The same argument holds for the black hole. Since we
have M � 1:4 the fundamental QNMs frequency is 0.2669
(See Table III built from Table 1 of [6]); as a result, one
must have b & 15:9 to trigger the fundamental mode (that
dominates the signal) although the overtones (that have
lower frequencies) can already be present in the waveform.
In any case,!2

max is smaller than the 4th overtone only and,
due to the correspondingly large damping time, this is not
expected to give a recognizable signature in the waveform.

On the basis of these considerations, we can summarize
our results by saying that, for our M � 1:4M� models,

when b * 16, the incoming pulse is totally unaffected by
the short-range structure of the object and the signals
backscattered by any of the stars and by the black hole
are identical in practice. This information, deduced by
inspecting the waveforms, can be synthesized by compar-
ing, as a function of b and for a fixed ‘, the energy released

TABLE II. The first four frequencies �n2 and damping times
�n2 of w-modes (for ‘ � 2) of model A: they have been
computed by means of a frequency domain code described in
Refs. [20–22]. The third and fourth column of the table list the
corresponding complex frequencies !n2 � i�n2 in our standard
units. We have !n2 � 2��n2M�G=c

3.

n �n2 [Hz] �n2 [�s] !n2 �n2

0 9497 32.64 0.29393 0.15091
1 16724 20.65 0.5176 0.23853
2 24277 17.21 0.75136 0.28621
3 32245 15.43 0.99796 0.31923
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FIG. 2. Energy spectra (from model A) for different values of
b. The maximum frequency is consistent with !max ’ 3

���
2
p
=b.

See text for discussion.

TABLE III. The first four complex ‘ � 2 QNMs frequencies
!n2 � i�n2 of a M � 1:4 black hole in our standard units
(Derived from the values published in Table 1 of [6]).

n �n2 [Hz] �n2 [�s] !n2 �n2

0 8624 77.52 0.2669 0.0635
1 8002 25.18 0.2477 0.1956
2 6948 14.42 0.2150 0.3416
3 5804 9.78 0.1796 0.5037
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FIG. 3 (color online). The ratio, as a function of b, of the
energy released in gravitational waves by the black hole and
different star models.

1These numbers have been computed by a frequency domain
code whose characteristics and performances are described in
Refs. [20–22,31]
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by the star (ENS) and by the black hole (EBH) computed
from Eq. (2.7). Figure 3 exhibits the ratio EBH=ENS for ‘ �
2 and ‘ � 3 (the latter for model A only). This quantity
decreases with b because (see Ref. [1]) for small b the
black hole, contrarily to the star, partly absorbs and partly
reflects the incoming radiation. On the other hand, the ratio
tends to one for b * 16, in good numerical agreement with
the value of the threshold, needed to excite the quasinormal
modes, that we estimated above. Notice that the saturation
to one for ‘ � 3 occurs for values of b smaller than for ‘ �
2. This is expected: in fact, the QNMs frequencies increase
with ‘ and thus one needs narrower b (and thus a larger
!b

max) to trigger space-time vibrations.

B. Identification of the w-modes

We conclude this section by discussing the possibility of
identifying unambiguously the presence of w-modes in the
waveforms and in the corresponding energy spectrum.
Ideally, one would like to find precise answers to the
following points: (i) understand which part of the wave-
form can be written as a superposition ofw-modes; (ii) how
many modes one should expect to be excited and (iii) how
does this depend on b.

Although these questions have been widely investigated
in the past (see, for example, Chapter 4 of [5], Ref. [6] and
references therein), still they have not been exhaustively
answered in the literature. The major conceptual problems
underlying this difficulty are (i) the fact that the quasinor-
mal modes sets are not complete and (ii) the so-called time
shift problem. The former is intrinsic in the definition of the
quasinormal modes and prevents, in fact, to associate an
energy to each excitation mode. The latter is related to the
exponential decay of the quasinormal modes and it implies
that, if the same signal occurs at a later time, the magni-
tudes of the modes will be larger with respect to that of the
same signal occurred at an earlier time. As a consequence,
the use of the magnitude of the amplitudes Cn [see Eq. (3.1)
below] is not a good measure of the excitation of the
quasinormal modes. We refer to the review of Nollert
[32] for a thorough discussion of such problems.

Beside these conceptual difficulties, from the practical
point of view it is however important to extract as much as
information as possible about the quasinormal modes by
analyzing the ringing phase of the signal. Two comple-
mentary methods can be used to this goal. On the one hand,
one can implement the Fourier analysis, namely, looking at
the energy Fourier spectrum in the frequency range where
w-modes are expected (see e.g. Refs. [12,15,19]). On the
other hand, one can perform a ‘‘fit analysis.’’ In this case, it
is assumed that, on a given interval �u � �ui; uf�, the
waveform can be written as a superposition of n exponen-
tially damped sinusoids, the quasinormal modes expan-
sion:

 �‘�
X
n�0

�n‘�
X
n�0

Cncos�!nu�	n�exp���nu�; (3.1)

of frequency!n and damping time 1=�n, that are, a priori,
unknown [we omit henceforth the index ‘ since in the
following we will be focusing only on the ‘ � 2 modes].
Using a nonlinear fit procedure one can estimate the values
of (!n, �n, Cn 	n) from the waveform. We perform this
analysis by means of a modified least-square Prony method
(see e.g. the discussion of Ref. [33]) to fit the waveforms. A
feedback on the reliability of our fit procedure is done by
comparing the values of frequency and damping time, !n‘
and �n‘, obtained by the fit with those of Table II and III
that we assume to be the correct ones.

The typical outcome of the fit analysis, using only the
fundamental mode (n � 0), are shown in Fig. 4 for the
black hole with b � 2 and in Fig. 5 for the star model A
with b � 2 (top panel) and b � 8 (bottom panel). When
b � 2, for which the largest space-time mode excitation is
expected, for both the star and the black hole the fits show
excellent agreement with the numerical waveform at early
times, that progressively worsen due to the power-law tail
contribution. The reliability of the procedure is confirmed
by the values of !0 and �0 that we obtain from the fit.

For the black hole, we have !0 � 0:2660 and �0 �
0:0631, which differ of, respectively, 0.3% and 0.6%
from the ‘‘exact’’ values of Table III. We can thus conclude
that the fundamental mode is essentially the only mode
excited for b � 2. For the star, model A, we obtain !0 �
0:2739 and �0 � 0:1636 and they differ, respectively, of
7% and 8% from the exact values of Table II. Since the
damping time of the fundamental star w-mode is generi-
cally smaller than that of an equal mass black hole, the
ringing is shorter and it is more difficult to obtain precise
quantitative statements. In this case we tried to include
more modes in the template (3.1) used for the fit in order to
precisely quantify the real contribution due to the presence
of overtones in the signal. Unfortunately, in this case the fit
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FIG. 4 (color online). Fits of the ring-down part of the wave-
form with the fundamental (n � 0) space-time mode for a black
hole excited by a b � 2 Gaussian pulse. We show the waveform
��o�2 �t� and its absolute value on a logarithmic scale to highlight
the differences with the fit.
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procedure seems badly conditioned and we could not
obtain a sensible feedback of the frequencies even if we
clearly obtain (having more adjustable parameters) a better
fit.

We have found that the choice of the time window to
perform this analysis has a strong influence on the result of
the fit. This choice is delicate and it is related to the
aforementioned problem of the time shift. Ideally, the
window should start with the ring-down (i.e., at the end
of the burst) and it must be both sufficiently narrow, in
order not to be influenced by the nonoscillatory tail, and
sufficiently extended to include all the relevant informa-
tion. There are no theoretical ways to predict or estimate
the correct window, but some systematic procedures have
actually been explored in the literature. We decided to use a
method very similar to the one discussed in detail in
Ref. [34]: it consists in setting uf at the end of the oscil-
latory phase, which is clearly identifiable in a logarithmic
plot, and choosing the initial time of the window ui such as

to minimize the difference between the real data (�data
j )

and the waveform synthesized from the results of the fitting
procedure (�fit

j ). This difference is estimated by means of
the following ‘‘scalar product’’

 ���data;�fit� 	

P
j

�data
j �fit

j

���������������������P
j
��data

j �
2

r ������������������P
j
��fit

j �
2

r (3.2)

whose result � is a value in the interval [0, 1] that it is
exactly one when the two time series are identical (perfect
fit). Figure 6 shows such a determination for the black hole
(top panel) and model A (bottom panel) with b � 2: both
curves exhibit a clear minimum of the quantity R 	 1�
� at, respectively, ui � 129 and ui � 131. The time win-
dow extends to uf � 254 (black hole) and uf � 174
(model A), respectively.
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FIG. 5 (color online). Fits of the ring-down part of the wave-
form with the fundamental (n � 0) space-time mode for the
stellar model A exited by b � 2 (upper panels) and a b � 8
(bottom panels) Gaussian pulse; For each value of b we show the
waveform ��o�2 �t� and its absolute value on a logarithmic scale to
highlight the differences with the fit.
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FIG. 6 (color online). The residual R 	 1�� [See Eq. (3.2)]
of the fits of the waveform of the response to a b � 2 Gaussian
pulse of a black hole (upper panel) and stellar model A (bottom
panel) as a function of the initial time (ui) of the fitting window
around its best values that it is ui � 129 for a black hole and
ui � 131 for model A.
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As can be seen in Fig. 7 one has that even a small change
of initial time ui of the window used produces sensible
variation of the estimated values of the frequency and the
damping time of the fundamental mode. However, it
should be noticed that the estimated values obtained for
the best window are those in best agreement with the
expected values.

We finally repeat the analysis for the data sets relative to
wider Gaussian pulses. Focusing on the representative b �
8 case, we find essentially the same picture with two main
differences. First, the ‘‘global’’ quality of the fit, given by
R is less good than in the b � 2 case; this is particularly
evident for the star, where the fitted frequencies differ from
the exact ones by more than 10%. Second, the fitting
window becomes narrower and narrower as b is increased
(see column seven of Table IV), thereby the fit analysis
quickly becomes meaningless.

For the reasons outlined above we have found this
procedure not as effective as we hoped. We think that the
problem of the unambiguous determination of the ‘‘right’’
time interval for the fit and of the presence and quantifi-
cation the overtones in numerical data deserves further
considerations.

IV. CONCLUSIONS

In this paper we have studied numerically the scattering
of odd-parity Gaussian pulses of gravitational radiation off
relativistic stars and black holes. We have found that the
excitation of w-modes and black hole QNMs occurs basi-
cally in the same way for both objects: pulses of small b
(high frequencies) can trigger the w-modes, while for large
b (low frequencies) one can only find curvature backscat-
tering effects and nonoscillatory tails. When w-modes are
present, we have shown that both frequency-domain (en-
ergy spectrum) and time-domain (fit to a superposition of
w-modes) analysis are useful to understand the mode con-
tent of the waveforms; however, our study also indicates
that it is difficult to single out precisely the contribution of
each mode, since the fundamental mode always dominates
the signal and a clear identification of the overtones is
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FIG. 7 (color online). Determination of the best window for
the fit of the black hole waveform and model A (b � 2). The
initial time ui is chosen so to minimize the residual R between
the data and the fit. For the black hole we obtain ui � 129 (uf �
254), while for model A we have ui � 131 (uf � 174). The
horizontal line indicates the values of the QNMs frequencies
reported in Tables II and III.

TABLE IV. The results of the fit of the fundamental mode for
the black hole and for the stellar model A in the response to
Gaussian pulse with b � 2 and b � 8 for the best fit windows
�ui; uf� determined using the minimum of the residual R 	 1�
� criteria (see Fig. 6). The reported error refer to relative
difference between the fitted values and reference values re-
ported in Tables II and III.

Model b !0 
!0 % �0 
�0 % �ui; uf� R

A 2 0.2739 7 0.1636 8 [131, 174] 2
 10�4

A 8 0.3396 15 0.1302 13 [131, 154] 1
 10�2

BH 2 0.2660 0.3 0.0631 0.6 [129, 254] 4
 10�4

BH 8 0.2614 0.2 0.0591 0.7 [129, 229] 5
 10�3
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lacking in the case of excitation induced by the scattering
of odd-parity Gaussian pulses of gravitational radiation.

The inspiring idea of this paper was to understand the
origin of the dynamical excitation of w-modes in a simple,
but rather general, setting, where it is possible to do many,
quick and controllable high-accuracy numerical simula-
tions with a tunable ‘‘source.’’ Our expectation is that the
main features of the process of w-mode excitation (i.e., its
dependence on the intrinsic frequency content of the initial
data) that we have highlighted in the perturbative regime
are sufficiently robust to survive qualitatively also in the
full 3D-nonlinear case that needs the solution of the full set
of Einstein equations. An encouraging motivation for hop-
ing so is that in other physical settings, like, for example,
the merger of two equal mass black holes, the perturbative
analysis of the early 1970s [3] in the extreme mass ratio
limit was able to single out the important physical elements
(i.e., the presence of QNMs), sketching a picture that has

been later refined, but substantially confirmed, by numeri-
cal relativity simulations [35–39].
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