4,602 research outputs found

    Lake eutrophication and its implications for organic carbon sequestration in Europe

    Get PDF
    The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 ΞΌg P l] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C AR) for the period 1950-1990 was ~60 g C m yr, and for lakes with >100 ΞΌg TP l the average was ~100 g C m yr. The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m yr), contemporary rates have increased by at least four to fivefold. The statistical relationship between C AR and TP derived from this study (r = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 ΞΌg TP l had OC burial rates in excess of 50 g C m yr over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles. Β© 2014 John Wiley & Sons Ltd

    Dissecting Representations

    Get PDF
    Choosing effective representations for a problem and for the person solving it has benefits, including the ability or inability to solve it. We previously devised a novel framework consisting of a language to describe representations and computational methods to analyse them in terms of their formal and cognitive properties. In this paper we demonstrate the application of this framework to a variety of notations including natural languages, formal languages, and diagrams. We show how our framework, and the analysis of representations that it enables, gives us insight into how and why we can select representations which are appropriate for both the task and the user

    The HST large programme on NGC 6752 – III. Detection of the peak of the white dwarf luminosity function

    Get PDF
    We report on the white dwarf (WD) cooling sequence of the old globular cluster NGC 6752, which is chemically complex and hosts a blue horizontal branch. This is one of the last globular cluster WD cooling sequences accessible to imaging by the Hubble Space Telescope. Our photometry and completeness tests show that we have reached the peak of the luminosity function of the WD cooling sequence, at a magnitude mF606W = 29.4 Β± 0.1, which is consistent with a formal age of ∼14 Gyr. This age is also consistent with the age from fits to the main-sequence turn-off (13–14 Gyr), reinforcing our conclusion that we observe the expected accumulation of WDs along the cooling sequence. Β© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Societ

    Statistical Signatures of Photon Localization

    Full text link
    The realization that electron localization in disordered systems (Anderson localization) is ultimately a wave phenomenon has led to the suggestion that photons could be similarly localized by disorder. This conjecture attracted wide interest because the differences between photons and electrons - in their interactions, spin statistics, and methods of injection and detection - may open a new realm of optical and microwave phenomena, and allow a detailed study of the Anderson localization transition undisturbed by the Coulomb interaction. To date, claims of three-dimensional photon localization have been based on observations of the exponential decay of the electromagnetic wave as it propagates through the disordered medium. But these reports have come under close scrutiny because of the possibility that the decay observed may be due to residual absorption, and because absorption itself may suppress localization. Here we show that the extent of photon localization can be determined by a different approach - measurement of the relative size of fluctuations of certain transmission quantities. The variance of relative fluctuations accurately reflects the extent of localization, even in the presence of absorption. Using this approach, we demonstrate photon localization in both weakly and strongly scattering quasi-one-dimensional dielectric samples and in periodic metallic wire meshes containing metallic scatterers, while ruling it out in three-dimensional mixtures of aluminum spheres.Comment: 5 pages, including 4 figure

    Sperm design and variation in the New World blackbirds (Icteridae)

    Get PDF
    Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies

    Get PDF
    A promising direction in drug development is to exploit the ability of natural killer cells to kill antibody-labeled target cells. Monoclonal antibodies and drugs designed to elicit this effect typically bind cell-surface epitopes that are overexpressed on target cells but also present on other cells. Thus it is important to understand adhesion of cells by antibodies and similar molecules. We present an equilibrium model of such adhesion, incorporating heterogeneity in target cell epitope density and epitope immobility. We compare with experiments on the adhesion of Jurkat T cells to bilayers containing the relevant natural killer cell receptor, with adhesion mediated by the drug alefacept. We show that a model in which all target cell epitopes are mobile and available is inconsistent with the data, suggesting that more complex mechanisms are at work. We hypothesize that the immobile epitope fraction may change with cell adhesion, and we find that such a model is more consistent with the data. We also quantitatively describe the parameter space in which binding occurs. Our results point toward mechanisms relating epitope immobility to cell adhesion and offer insight into the activity of an important class of drugs.Comment: 13 pages, 5 figure
    • …
    corecore