3,275 research outputs found

    Foraging activity by the southern brown bandicoot (Isoodon obesulus) as a mechanism for soil turnover

    Get PDF
    Mammals that forage for food by biopedturbation can alter the biotic and abiotic characteristics of their habitat, influencing ecosystem structure and function. Bandicoots, bilbies, bettongs and potoroos are the primary digging marsupials in Australia, although most of these species have declined throughout their range. This study used a snapshot approach to estimate the soil turnover capacity of the southern brown bandicoot (Isoodon obesulus, Shaw 1797), a persisting digging Australian marsupial, at Yalgorup National Park, Western Australia. The number of southern brown bandicoots was estimated using mark-recapture techniques. To provide an index of digging activity per animal, we quantified the number of new foraging pits and bandicoot nose pokes across 18 plots within the same area. The amount of soil displaced and physical structure of foraging pits were examined from moulds of 47 fresh foraging pits. We estimated that an individual southern brown bandicoot could create ∼45 foraging pits per day, displacing ∼10.74kg of soil, which extrapolates to ∼3.9 tonnes of soil each year. The digging activities of the southern brown bandicoots are likely to be a critical component of soil ecosystem processe

    Cattle herd dynamics: An integer and stochastic model for evaluating production alternatives

    Get PDF
    Presents a cattle herd simulation model which is time dynamic, stochastic, non-optimizing & integer and permits the evaluation of herd performance under alternative production regimes; discusses the analytical background to the biological relationships represented in the model, describes detailed algorithms used in the computer simulation model, and outlines necessary steps for the application of the model

    The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD came

    Get PDF
    Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode

    Vapor Equilibrium Data for the Binary Mixtures of Dimethyl Carbonate and Ethyl Methyl Carbonate in Compressed Carbon Dioxide

    Get PDF
    Phase equilibrium data for the binary systems of carbon dioxide + dimethyl carbonate and carbon dioxide + ethyl methyl carbonate were obtained. All systems were measured for isotherms ranging from 298.2 K to 328.2 K with pressure ranging between 0.13 MPa and 10.6 MPa. A static equilibrium technique was established with samples quantified using an offline method. The results were modeled using the Peng–Robinson equation of state with van der Waals one-fluid mixing rules

    The Screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and Hamiltonian dynamics

    Full text link
    This paper treats 6j symbols or their orthonormal forms as a function of two variables spanning a square manifold which we call the "screen". We show that this approach gives important and interesting insight. This two dimensional perspective provides the most natural extension to exhibit the role of these discrete functions as matrix elements that appear at the very foundation of the modern theory of classical discrete orthogonal polynomials. Here we present 2D and 1D recursion relations that are useful for the direct computation of the orthonormal 6j, which we name U. We present a convention for the order of the arguments of the 6j that is based on their classical and Regge symmetries, and a detailed investigation of new geometrical aspects of the 6j symbols. Specifically we compare the geometric recursion analysis of Schulten and Gordon with the methods of this paper. The 1D recursion relation, written as a matrix diagonalization problem, permits an interpretation as a discrete Schr\"odinger-like equations and an asymptotic analysis illustrates semiclassical and classical limits in terms of Hamiltonian evolution.Comment: 14 pages,9 figures, presented at ICCSA 2013 13th International Conference on Computational Science and Applicatio

    The random phase property and the Lyapunov Spectrum for disordered multi-channel systems

    Get PDF
    A random phase property establishing in the weak coupling limit a link between quasi-one-dimensional random Schrödinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the unitaries in the hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a tubular geometry with magnetic field and spin-orbit coupling, the normal system of coordinates is calculated and this is used to derive explicit energy dependent formulas for the Lyapunov spectrum

    Raman spectroscopy insights into the a- and d-phases of formamidinium lead iodide (FAPbI3)

    Get PDF
    Solar perovskites have received phenomenal attention and success over the past decade, due to their high power conversion efficiencies (PCE), ease of fabrication and low cost which has enabled the prospect of them being a real commercial contender to the traditional silicon technology. In one of the several developments on the archetypal MAPbI3perovskite absorber layer, FAPbI3was found to obtain a higher PCE, likely due to its more optimum band gap, with doping strategies focusing on the inclusion of MA+/Cs+cations to avoid the unfavourable phase transformation to a photoinactive phase. To better understand the phase change from the photoactive cubic (Pm3¯m) black (a) phase to the unwanted photoinactive (P63/mmc) yellow (d) phase, we make use of variable temperature Raman spectroscopy to probe the molecular species and its relationship to the inorganic framework. We show for the first time there to be no Raman active modes for the a phase up to 4000 cm-1, which can be correlated to thePm3¯mcubic symmetry of that phase. Our detailed studies suggest that previous reports of the observation of Raman peaks for this phase are likely associated with degradation reactions from the localised laser exposure and the formation of Raman active lead oxide. In addition, we have identified water as a contributing factor to the transformation, and observed a corresponding signal in the Raman spectra, although confirmation of its exact role still remains inconclusive

    Magnetic Properties of a Superconductor with no Inversion Symmetry

    Full text link
    We study the magnetic properties of a superconductor in a crystal without zzz \to -z symmetry, in particular how the lack of this symmetry exhibits itself. We show that, though the penetration depth itself shows no such effect, for suitable orientation of magnetic field, there is a magnetic field discontinuity at the interface which shows this absence of symmetry. The magnetic field profile of a vortex in the xyx-y plane is shown to be identical to that of an ordinary anisotropic superconductor except for a shift in the z-z direction by κ~λx{\tilde \kappa} \lambda_x (see errata). For a vortex along zz, there is an induced magnetization along the radial direction.Comment: J. Low Temp. Physics, 140, 67 (2005); with Errat

    Non-BCS superconductivity for underdoped cuprates by spin-vortex attraction

    Full text link
    Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different N\'eel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon binding them into a physical hole. Through gauge interaction the spin vortex attraction induces the formation of spin-singlet (RVB) spin pairs with a owering of the spinon gap. Lowering the temperature the approach exhibits two crossover temperatures: at the higher crossover a finite density of incoherent holon pairs are formed leading to a reduction of the hole spectral weight, at the lower crossover also a finite density of incoherent spinon RVB pairs are formed, giving rise to a gas of incoherent preformed hole pairs, and magnetic vortices appear in the plasma phase. Finally, at a even lower temperature the hole pairs become coherent, the magnetic vortices become dilute and superconductivity appears. The superconducting mechanism is not of BCS-type since it involves a gain in kinetic energy (for spinons) coming from the spin interactions.Comment: 4 pages, 3 figures, accepted by the proceedings of SNS2010 conferenc

    Heating Augmentation for Short Hypersonic Protuberances

    Get PDF
    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9:5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hyper- sonic protuberances (k/delta < 0.33) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation
    corecore