35 research outputs found

    Protocol for an individual patient data meta-analysis on blood pressure targets after cardiac arrest

    Get PDF
    Background Hypotension is common after cardiac arrest (CA), and current guidelines recommend using vasopressors to target mean arterial blood pressure (MAP) higher than 65 mmHg. Pilot trials have compared higher and lower MAP targets. We will review the evidence on whether higher MAP improves outcome after cardiac arrest. Methods This systematic review and meta-analysis will be conducted based on a systematic search of relevant major medical databases from their inception onwards, including MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL), as well as clinical trial registries. We will identify randomised controlled trials published in the English language that compare targeting a MAP higher than 65-70 mmHg in CA patients using vasopressors, inotropes and intravenous fluids. The data extraction will be performed separately by two authors (a third author will be involved in case of disagreement), followed by a bias assessment with the Cochrane Risk of Bias tool using an eight-step procedure for assessing if thresholds for clinical significance are crossed. The outcomes will be all-cause mortality, functional long-term outcomes and serious adverse events. We will contact the authors of the identified trials to request individual anonymised patient data to enable individual patient data meta-analysis, aggregate data meta-analyses, trial sequential analyses and multivariable regression, controlling for baseline characteristics. The certainty of the evidence will be assessed by the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. We will register this systematic review with Prospero and aim to redo it when larger trials are published in the near future. Conclusions This protocol defines the performance of a systematic review on whether a higher MAP after cardiac arrest improves patient outcome. Repeating this systematic review including more data likely will allow for more certainty regarding the effect of the intervention and possible sub-groups differences.Peer reviewe

    Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy

    Get PDF
    Background: Prediction of neurological outcome is a crucial part of post cardiac arrest care and prediction in patients remaining unconscious and/or sedated after rewarming from targeted temperature management (TTM) remains difficult. Current guidelines suggest the use of serial measurements of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population. Methods: This study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients were included from sites participating in the TTMPLOS trial biobank sub study. NSE was measured at 24, 48 and 72 hours after ROSC and followup was concluded after 180 days. The primary end point was poor neurological function or death defined by a cerebral performance category score (CPC-score) of 3 to 5. Results: A total of 685 (73%) patients participated in the study. At day three after OHCA 63 (9%) patients had died and 473 (69%) patients were not awake. In these patients, a single NSE measurement at 48 hours predicted poor outcome with an area under the receiver operating characteristics curve (AUC) of 0.83. A combination of all three NSE measurements yielded the highest discovered AUC (0.88, p = .0002). Easily applicable combinations of serial NSE measurements did not significantly improve prediction over a single measurement at 48 hours (AUC 0.58-0.84 versus 0.83). Conclusion: NSE is a strong predictor of poor outcome after OHCA in persistently unconscious patients undergoing TTM, and NSE is a promising surrogate marker of outcome in clinical trials. While combinations of serial NSE measurements may provide an increase in overall prognostic information, it is unclear whether actual clinical prognostication with low false-positive rates is improved by application of serial measurements in persistently unconscious patients. The findings of this study should be confirmed in another prospective cohort

    Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis.

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Hydroxyethyl starch (HES) [corrected] is widely used for fluid resuscitation in intensive care units (ICUs), but its safety and efficacy have not been established in patients with severe sepsis. In this multicenter, parallel-group, blinded trial, we randomly assigned patients with severe sepsis to fluid resuscitation in the ICU with either 6% HES 130/0.42 (Tetraspan) or Ringer's acetate at a dose of up to 33 ml per kilogram of ideal body weight per day. The primary outcome measure was either death or end-stage kidney failure (dependence on dialysis) at 90 days after randomization. Of the 804 patients who underwent randomization, 798 were included in the modified intention-to-treat population. The two intervention groups had similar baseline characteristics. At 90 days after randomization, 201 of 398 patients (51%) assigned to HES 130/0.42 had died, as compared with 172 of 400 patients (43%) assigned to Ringer's acetate (relative risk, 1.17; 95% confidence interval [CI], 1.01 to 1.36; P=0.03); 1 patient in each group had end-stage kidney failure. In the 90-day period, 87 patients (22%) assigned to HES 130/0.42 were treated with renal-replacement therapy versus 65 patients (16%) assigned to Ringer's acetate (relative risk, 1.35; 95% CI, 1.01 to 1.80; P=0.04), and 38 patients (10%) and 25 patients (6%), respectively, had severe bleeding (relative risk, 1.52; 95% CI, 0.94 to 2.48; P=0.09). The results were supported by multivariate analyses, with adjustment for known risk factors for death or acute kidney injury at baseline. Patients with severe sepsis assigned to fluid resuscitation with HES 130/0.42 had an increased risk of death at day 90 and were more likely to require renal-replacement therapy, as compared with those receiving Ringer's acetate. (Funded by the Danish Research Council and others; 6S ClinicalTrials.gov number, NCT00962156.)Danish Research Council 271-08-0691 09-066938 Rigshospitalet Research Council Scandinavian Society of Anesthesiology and Intensive Care Medicine ACTA Foundation Fresenius Kab

    Blood pressure targets and management during post-cardiac arrest care

    No full text
    Blood pressure is one modifiable physiological target in patients treated in the intensive care unit after cardiac arrest. Current Guidelines recommend targeting a mean arterial pressure (MAP) of higher than 65-70 mmHg using fluid resuscitation and the use of vasopressors. Management strategies will vary based in the setting, i.e. the pre-hospital compared to the in-hospital phase. Epidemiological data suggest that some degree of hypotension requiring vasopressors occur in almost 50% of patients. A higher MAP could theoretically increase coronary blood flow but on the other hand the use of vasopressor may result in an increase in cardiac oxygen demand and arrhythmia. An adequate MAP is paramount for maintaining cerebral blood flow. In some cardiac arrest patients the cerebral autoregulation may be disturbed resulting in the need for higher MAP in order to avoid decreasing cerebral blood flow. Thus far, four studies including little more than 1000 patients have compared a lower and higher MAP target in cardiac arrest patients. The achieved mean difference of MAP between groups has varied from 10-15 mmHg. Based on these studies a Bayesian meta-analysis suggests that the posterior probability that a future study would find treatment effects higher than a 5% difference between groups to be less than 50%. On the other hand, this analysis also suggests, that the likelihood of harm with a higher MAP target is also low. Noteworthy is that all studies to date have focused mainly on patients with a cardiac cause of the arrest with the majority of patients being resuscitated from a shockable initial rhythm. Future studies should aim to include also non-cardiac causes and aim to target a wider separation in MAP between groups.Peer reviewe

    Associations between partial pressure of oxygen and neurological outcome in out-of-hospital cardiac arrest patients: an explorative analysis of a randomized trial

    Get PDF
    Abstract Objective Exposure to hyperoxemia and hypoxemia is common in out-of-hospital cardiac arrest (OHCA) patients following return of spontaneous circulation (ROSC), but its effects on neurological outcome are uncertain, and study results are inconsistent. Methods Exploratory post hoc substudy of the Target Temperature Management (TTM) trial, including 939 patients after OHCA with return of spontaneous circulation (ROSC). The association between serial arterial partial pressures of oxygen (PaO2) during 37 h following ROSC and neurological outcome at 6 months, evaluated by Cerebral Performance Category (CPC), dichotomized to good (CPC 1–2) and poor (CPC 3–5), was investigated. In our analyses, we tested the association of hyperoxemia and hypoxemia, time-weighted mean PaO2, maximum PaO2 difference, and gradually increasing PaO2 levels (13.3–53.3 kPa) with poor neurological outcome. A subsequent analysis investigated the association between PaO2 and a biomarker of brain injury, peak serum Tau levels. Results Eight hundred sixty-nine patients were eligible for analysis. Three hundred patients (35%) were exposed to hyperoxemia or hypoxemia at some time point after ROSC. Our analyses did not reveal a significant association between hyperoxemia, hypoxemia, time-weighted mean PaO2 exposure or maximum PaO2 difference and poor neurological outcome at 6-month follow-up after correction for co-variates (all analyses p = 0.146–0.847). We were not able to define a PaO2 level significantly associated with the onset of poor neurological outcome. Peak serum Tau levels at either 48 or 72 h after ROSC were not associated with PaO2. Conclusion Hyperoxemia or hypoxemia exposure occurred in one third of the patients during the first 37 h of hospitalization and was not significantly associated with poor neurological outcome after 6 months or with the peak s-Tau levels at either 48 or 72 h after ROSC
    corecore