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Associations between partial pressure
of oxygen and neurological outcome in
out-of-hospital cardiac arrest patients: an
explorative analysis of a randomized trial
Florian Ebner1* , Susann Ullén2, Anders Åneman3, Tobias Cronberg4, Niklas Mattsson4, Hans Friberg5,
Christian Hassager6,7, Jesper Kjærgaard6,7, Michael Kuiper8, Paolo Pelosi9,10, Johan Undén11, Matt P. Wise12,
Jørn Wetterslev13 and Niklas Nielsen1

Abstract

Objective: Exposure to hyperoxemia and hypoxemia is common in out-of-hospital cardiac arrest (OHCA) patients
following return of spontaneous circulation (ROSC), but its effects on neurological outcome are uncertain, and
study results are inconsistent.

Methods: Exploratory post hoc substudy of the Target Temperature Management (TTM) trial, including 939 patients
after OHCA with return of spontaneous circulation (ROSC). The association between serial arterial partial pressures of
oxygen (PaO2) during 37 h following ROSC and neurological outcome at 6 months, evaluated by Cerebral
Performance Category (CPC), dichotomized to good (CPC 1–2) and poor (CPC 3–5), was investigated. In our
analyses, we tested the association of hyperoxemia and hypoxemia, time-weighted mean PaO2, maximum PaO2

difference, and gradually increasing PaO2 levels (13.3–53.3 kPa) with poor neurological outcome. A subsequent
analysis investigated the association between PaO2 and a biomarker of brain injury, peak serum Tau levels.

Results: Eight hundred sixty-nine patients were eligible for analysis. Three hundred patients (35%) were exposed to
hyperoxemia or hypoxemia at some time point after ROSC. Our analyses did not reveal a significant association
between hyperoxemia, hypoxemia, time-weighted mean PaO2 exposure or maximum PaO2 difference and poor
neurological outcome at 6-month follow-up after correction for co-variates (all analyses p = 0.146–0.847). We were
not able to define a PaO2 level significantly associated with the onset of poor neurological outcome. Peak serum
Tau levels at either 48 or 72 h after ROSC were not associated with PaO2.

Conclusion: Hyperoxemia or hypoxemia exposure occurred in one third of the patients during the first 37 h of
hospitalization and was not significantly associated with poor neurological outcome after 6 months or with the
peak s-Tau levels at either 48 or 72 h after ROSC.
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Background
Survival after out-of-hospital cardiac arrest (OHCA) has
improved over the last two decades and patients admit-
ted to critical care are frequently discharged alive with
increasingly good neurological outcome [1–4]. Following
OHCA, patients regularly suffer from post cardiac arrest
syndrome including symptoms of anoxic brain injury
and reperfusion-related damage [5, 6]. In recent years,
the optimal oxygen content in the post-cardiac arrest
period has been a matter of debate since ventilation with
high concentrations of oxygen after return of spontaneous
circulation (ROSC) has been linked to worse outcome and
an increased degree of cerebral neuronal damage in ex-
perimental cardiac arrest models [7–10]. In healthy volun-
teers, hyperoxemia decreases cerebral blood flow [11, 12],
whilst hypoxemia is associated with the opposite effect
[13]. Hyperoxemia also augments the production of react-
ive oxygen species (ROS), increases lipid oxidation and
amplifies the inflammatory reaction in the brain during re-
perfusion after circulatory arrest [10, 14].
Clinical studies evaluating the impact of hyperoxemia

and hypoxemia on neurological outcome after ROSC
have shown inconsistent results when compared to the
preclinical cardiac arrest models [15–19]. Two large
landmark studies published in 2010 and 2011 limit their
analysis to single or very few partial pressure of oxygen
(PaO2) values in the post cardiac arrest phase [15, 17].
Although more recent studies have analysed multiple
PaO2 values over time, so far, human studies continue to
differ regarding patient selection, the use of targeted
temperature management, outcome measurement, and
methods of analysing blood gas and often lack a pre-defined
sampling protocol [18–23].
We conducted this exploratory substudy of the pro-

spectively collected blood-gas measurements in the Target
Temperature Management after Out-of-Hospital Cardiac
Arrest (TTM) trial in order to describe the fluctuation in
PaO2 in the post-cardiac arrest phase and the association
of hyperoxemia and hypoxemia with neurological out-
come after 6months [24]. An analysis of peak levels of
serum Tau (s-Tau), a novel marker for neuronal injury, at
either 48 or 72 h after ROSC and its association with
PaO2 was subsequently performed to validate our results.

Methods
The present study is a post hoc analysis of data acquired
from 939 unconscious (Glasgow Coma Scale (GCS) < 8)
adult (18 years or older) OHCA patients included in the
TTM trial conducted between November 2010 and
January 2013. Ethical committees in each participating
country approved the TTM trial protocol, and informed
consent was waived or obtained from all participants or
relatives according to national legislations, in line with
the Helsinki declaration.

The TTM trial was a randomized clinical trial recruit-
ing patients in 36 intensive care units in Europe and
Australia, designed to evaluate two target temperature
regimes, 33 °C (n = 473) and 36 °C (n = 466), in uncon-
scious adult OHCA patients after sustained ROSC [24].
Target temperature management was commenced at in-
clusion into the study. After 28 h, the patients were
rewarmed to 37 °C core temperature over a period of 8 h
and mandatory sedation was discontinued at the end of
the 36-h intervention period. Resuscitation data was re-
ported according to the Utstein style protocol [25].
Follow-up was obtained by structured face-to-face inter-
view with the patient (86%) or structured telephone
interview with the patient, care provider, or relative
(14%) by a blinded assessor. The TTM trial did not show
a significant difference between the two temperature
groups in overall mortality at the end of the trial or in
the composite of poor neurologic function or death at
180 days [24].
Baseline, intervention-related and physiological vari-

ables as demographic characteristics, comorbidities,
pre-hospital and admission data, characteristics of the
cardiac arrest, and baseline laboratory analyses were pro-
spectively collected. A complete arterial blood gas ana-
lysis was performed in all patients at admission to
hospital (T-1), start of intervention (T0), and after 4
(T4), 12 (T12), 20 (T20), 28 (T28), 32 (T32), and 36
(T36) hours post inclusion. In order to include the ad-
mission blood gas analysis, obtained after ROSC but be-
fore inclusion, we timed this analysis to 1 h before
randomization in the statistical analysis of the present
study. All arterial blood gases were collected according
to an a priori designed protocol and analysed using the
alpha-stat method only [26]. Median time from ROSC to
inclusion was 133 (interquartile range 83–188) min. For
the present study, PaO2 and FiO2 data were assessed
and manually corrected for registration shortcomings by
two authors in consensus (FE and NN). Details of the
correction process are described in Additional file 1:
Methods. Patient identification data were pseudomized.
Patients who demised before the end of the intervention
period were excluded from the present study to allow
for a homogenous exposure period to PaO2. We chose
to orientate on the STROBE Statement style for the
study manuscript [27].

Outcome
The primary outcome was overall neurological function at
follow-up 6months after cardiac arrest, assessed by Cere-
bral Performance Category (CPC) and dichotomized into
good and poor with CPC 1 (good cerebral performance)
and CPC 2 (mild neurological impairment) considered as
good outcome, and CPC 3 to 5 as poor outcome with
CPC 3–4 representing severe neurological impairment or
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vegetative state and CPC 5 death [28, 29]. In addition, we
used the serum levels of Tau as a surrogate marker of
neuronal injury in a subgroup analysis.

Definition of hyperoxemia, hypoxemia, and normoxemia
We a priori defined hyperoxemia as a PaO2 > 40 kPa and
hypoxemia as a PaO2 < 8 kPa in accordance with previ-
ous studies [15, 17, 23]. All values not defined as hyper-
oxemia or hypoxemia were defined as normoxemia.

Primary analysis
Absolute oxygen levels
We divided our cohort according to the most extreme
PaO2 of the individual patient into three groups: hyper-
oxemia, hypoxemia, and normoxemia. Thereafter, we
compared the outcome of the hyperoxemia and hypox-
emia group with normoxemia, followed by the compari-
son of each group’s outcome with the outcome of a
composite group of the remaining patients.

Threshold analysis
In order to identify a possible PaO2 threshold value for
the onset of the association of PaO2 and poor neuro-
logical outcome, we performed multivariable regression
models with gradually increasing PaO2 levels.

Secondary analyses
Oxygen exposure over time
To evaluate the cumulative PaO2 exposure over time, we
formed a PaO2 over time integral from which we derived
the time-weighted mean PaO2 (PaO2-TWM). Primarily,
we evaluated the association of the PaO2-TWM from
T-1 to T36 with outcome and, secondarily, from T-1 to
T12 in order to identify effects of early hyperoxemia or
hypoxemia.

Oxygen pressure difference
The difference between the most extreme PaO2 values
during the observation time was calculated for each pa-
tient. The association of this maximum PaO2 difference
with neurological outcome was analysed.
For an illustration of our primary and secondary ana-

lyses, see Additional file 1: Figure S1.

Association between PaO2 and s-Tau
We used the cohort of 689 patients of the TTM trial
substudy by Mattsson et al. [30] and evaluated the asso-
ciation of our multivariable PaO2 models with the high-
est level of s-Tau at either 48 or 72 h.

Sensitivity analyses
Sensitivity analyses were performed with a complete case
cohort of 468 patients with blood gas samples registered
from all measuring points and an all-patient cohort of

922 patients including also those not surviving the full
exposure period. Seventeen patients had insufficient data
for analysis and were not included in the sensitivity ana-
lyses. Subsequently, we performed a sensitivity analysis
of our primary analysis cohort including FiO2 as an add-
itional co-variable and an all-cause mortality analysis.

Statistics
Proportions are presented as percentages and continuous
variables as mean with standard deviations (SD). Missing-
ness was assumed at random [31]. Since the number of
missing values exceeded 5%, we employed multiple imput-
ation to compensate for the missing data [32]. Predictive
mean matching, utilizing available non-missing values as
well as available TTM trial study variables on the same in-
dividual and variables obtained from matching patients,
was used. Twenty imputations were generated by chained
equations and assessed by graphical methods. For each
imputed dataset, PaO2 was evaluated using summary mea-
sures and regression models. The estimates from the re-
gression for each imputed sample were combined into
one estimate with 95% confidence intervals (CI) including
the uncertainty from the multiple imputations based on
Rubin’s rule [33]. Missing outcome data and death before
end of intervention time entailed exclusion from analysis
and was not compensated for.
Logistic regression analysis was used to assess the as-

sociation between PaO2 and neurological outcome at
6-month follow-up. Results of our multivariable regres-
sion models are presented as odds ratios (OR) with 95%
CI, OR describing continuous data present changes in
one unit; for PaO2 1 kPa, for pH one unit. All regression
analyses were adjusted for pre-specified and in the con-
text of OHCA relevant co-variates: age (years), sex
(male/female), chronic heart failure (yes/no), asthma/
chronic obstructive pulmonary disease (yes/no), cardiac
arrest witnessed (yes/no), bystander cardiopulmonary re-
suscitation (yes/no), time to ROSC (minutes), Glasgow
Coma Scale-Motor Score (1 vs 2–5), circulatory shock
on admission (yes/no), first rhythm shockable (yes/no),
and pH (units). We pooled the two temperature groups
(33 °C and 36 °C) as there was no significant interaction be-
tween the PaO2 groups and the two temperature groups.
For the s-Tau analysis, multivariable linear regression

was used and the depending variables were adjusted for
the co-variables and interaction analyses as described
above. After transforming the s-Tau values to a logarith-
mic scale, they were used as dependent variable in the
linear regression analyses. The multiplicative change in
s-Tau was depicted by the regression coefficients ob-
tained for each independent variable after back trans-
formation. Linear regression results are presented as
beta-coefficient estimates with 95% CI.
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The primary analyses were performed on a multiple
imputation cohort as described above. The complete
case and all-patient cohorts were used for sensitivity
analysis. We regarded a two-sided P value < 0.05 as sig-
nificant. Analyses were conducted using IBM SPSS sta-
tistics for Windows (version 22.0, Armonk NY) and R: A
language and environment for statistical Computing
(version 3.3.3 R Foundation for Statistical Computing,
Vienna, Austria). The R package mice was used for mul-
tiple imputations [34].

Results
Data for this explorative substudy was derived from 939
patients randomized in the TTM trial. We excluded pa-
tients who did not survive the intervention period (n =
62) and patients with no PaO2 data (n = 2) and missing
neurological outcome data at 6-month follow-up (n = 6),
which left 869 patients (92.5%) eligible for analysis
(Fig. 1). Baseline characteristics for all the patients in-
cluded and the different exposure groups are presented
in Table 1. Overall, 441 patients (50.7%) had a good out-
come whereas 428 patients (49.3%) had a poor outcome
(Table 2). Of 869 patients, 384 (44.2%) died. Nine hun-
dred eighteen of 6952 (13.2%) PaO2-measuring points
were missing (Additional file 1: Table S1). At hospital
admission, mean PaO2 was 25.1 (SD 17.0) kPa and di-
minished gradually in the temperature and outcome
groups over time (Fig. 2a and b). In our primary analysis,
we found that 199 of 869 (22.9%) patients were exposed
to hyperoxemia at some point after admission to hos-
pital, 112 (12.9%) were exposed to hypoxemia, 11 (1.3%)
experienced both hyper- and hypoxemia, and 569
(65.5%) remained normoxic throughout. One hundred
ninety-seven of 199 exposures to hyperoxemia occurred

within the first 5 h after admission to hospital. Detailed
post ROSC PaO2 data of the primary analysis groups are
displayed in Table 3. In our secondary analyses, we
found that PaO2-TWM from T-1 to T12 was mean 17.2
(SD 5.5) kPa whilst PaO2-TWM for all measurements
was mean 14.5 (SD 3.2) kPa. The median maximum PaO2

difference was 14.3 kPa, with an interquartile range (IQR)
of 8.6 to 27.2 kPa. For this study, we pooled the patients
from the two TTM trial temperature groups into one co-
hort, which was feasible since the term of interaction ana-
lysis between the PaO2 exposure groups and TTM group
affiliation (33 °C or 36 °C) showed no significant results
(pinteraction = 0.537–0.972) (Additional file 1: Table S2).

Primary outcome analyses
The absolute oxygen pressure analysis did not show a sig-
nificant association between hyperoxemia versus normoxe-
mia OR 1.24 (0.81, 1.89) p= 0.314 or hyperoxemia versus no
hyperoxemia OR 1.28 (0.86, 1.91) p = 0.219 and poor neuro-
logical outcome. We also found no association with poor
outcome in the hypoxemia exposure groups: hypoxemia ver-
sus normoxemia OR 1.06 (0.60, 1.85) p= 0.847 and hypox-
emia versus no hypoxemia OR 1.13 (0.66, 1.91) p= 0.647.
Detailed multivariate models of the hyperoxemia and hypox-
emia analyses are presented in Tables 4 and 5. Figure 3
shows the adjusted ORs for poor neurological outcome of
the PaO2 threshold analysis. We were not able to identify a
PaO2 threshold value significantly associated with the onset
of poor neurological outcome across gradually increasing
PaO2 levels.

Secondary outcome analyses
In our PaO2-TWM analyses, we did not find an associ-
ation with poor neurological outcome, either for the

Fig. 1 Patient selection pathway. TTM, targeted temperature management. TTM group, 33 or 36 °C core body temperature derived from the TTM
trial [24]. n, number of patients. The diagram does not display the selection pathway for the s-Tau analysis
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complete exposure period (T-1 to T36), OR 1.03 (0.97,
1.09) p = 0.375, or for the early exposure period (T-1 to
T12), OR 1.02 (0.98, 1.05) p = 0.288. We were also not
able to show an association between maximum PaO2

difference and poor neurological outcome OR 1.01 (0.99,
1.02) p = 0.146.

Association between PaO2 and s-Tau
Of the 689 patients in the s-Tau analysis, 64 were excluded
as per our eligibility criteria and 36 had missing peak
s-Tau levels at 48 or 72 h after ROSC, leaving 589 patients
for analysis. Table 6 displays the detailed multivariable
models of PaO2 and s-Tau. We did not find statistically
significant associations between PaO2 and highest s-Tau at
either 48 or 72 h after ROSC (p = 0.198–0.687).

Sensitivity analyses
The analysis of the complete case cohort (n = 468) revealed
non-significant results, in line with our multiple imputation
cohort used for our primary analyses (p = 0.057–0.811).
The all-patient cohort (n = 922), including also the patients
dying during the exposure period, showed non-significant
results (p = 0.060–0.979). The results with all-cause
mortality instead of neurological function as the out-
come were non-significant and similar to our primary

Table 1 Baseline characteristics for all patients and exposure groups

Demographic characteristics All patients
n = 869

Hyperoxemia
n = 199

Normoxemia
n = 569

Hypoxemia
n = 112

Hyper- and Hypoxemia
n = 11

Age (years) (mean, SD) 63.9 ± 12.2 64.0 ± 12.8 63.9 ± 12.1 63.6 ± 11.9 63.7 ± 15.0

Male sex no. (%) 707 (81.4) 150 (75.4) 476 (83.7) 87 (77.7) 6 (58.4)

Background no. (%)

Chronic heart failure 55 (6.3) 16 (8.0) 33 (5.9) 7 (6.2) 1 (11.0)

TIA or stroke 69 (8.0) 16 (7.8) 43 (7.5) 11 (9.7) 0 (0)

Arterial hypertension 347 (40.1) 78 (39.6) 228 (40.1) 46 (41.4) 5 (48.3)

Asthma/COPD 86 (9.9) 19 (9.7) 56 (9.9) 11 (9.8) 1 (5.3)

Diabetes mellitus 128 (14.8) 31 (15.8) 81 (14.3) 18 (16.3) 2 (22.0)

Previous PCI 101 (11.6) 23 (11.8) 61 (10.8) 18 (15.8) 1 (10.0)

Previous CABG 82 (9.5) 23 (11.5) 52 (9.2) 7 (6.5) 0 (0)

Cardiac arrest characteristics

Bystander witnessed arrest no. (%) 783 (90.1) 174 (87.6) 514 (90.4) 104 (92.8) 9 (87.6)

Bystander CPR no. (%) 638 (73.4) 140 (70.3) 428 (75.1) 77 (69.1) 6 (61.7)

Circulatory shock on admission no. (%) 111 (12.8) 25 (12.4) 69 (12.1) 21 (18.9) 4 (36.4)

Prehospital intubation no. (%) 576 (67.2) 138 (69.7) 382 (68.2) 63 (57.2) 7 (62.7)

Time to ROSC (min) (mean, SD) 30.4 ± 21.7 30.9 ± 23.0 30.0 ± 21.5 31.6 ± 19.9 34.3 ± 15.5

Characteristics on admission

pH (mean, SD.) 7.21 ± 0.15 7.20 ± 0.2 7.20 ± 0.1 7.10 ± 0.2 7.10 ± 0.2

PaCO2 (kPa) (mean, SD) 6.4 ± 2.0 6.1 ± 2.0 6.4 ± 1.9 7.3 ± 2.4 7.9 ± 2.6

PaO2 (kPa) (mean, SD) 25.1 ± 17.0 49.8 ± 15.1 18.9 ± 8.3 13.7 ± 11.1 35.0 ± 19.0

Lactate (mmol/L) (mean, SD) 6.5 ± 4.3 7.3 ± 4.1 6.0 ± 4.3 7.9 ± 4.5 10.2 ± 5.4

BE − 5 or less (mmol/l) no. (%) 579 (71.3) 144 (78.7) 362 (67.4) 81 (78.9) 7 (75.0)

GCS-Motor 1 no. (%) 443 (51.3) 116 (58.7) 280 (49.5) 55 (49.9) 7 (78.7)

Sedated on arrival no. (%) 254 (29.4) 43 (21.6) 179 (31.6) 34 (31.3) 2 (16.5)

% are displayed as valid percent over 20 imputations. Patients with combined exposure are also included in the separate hyperoxemia or hypoxemia
exposure groups
SD standard deviation, TIA transient ischemic attack, COPD chronic obstructive pulmonary disease, PCI percutaneous coronary intervention, CABG coronary artery
bypass graft, CPR cardiopulmonary resuscitation, GCS Glasgow Coma Scale, ROSC return of spontaneous circulation, PaCO2 arterial partial pressure of carbon
dioxide, PaO2 arterial partial pressure of oxygen, kPa kilopascal, mmol/l millimoles per liter, BE base excess

Table 2 Neurological outcome according to CPC in the PaO2

exposure groups at 6-month follow-up

Exposure group Good outcome Poor outcome Total

Hypoxemia 53 (47%) 59 (53%) 112

Hyperoxemia 88 (44%) 111 (56%) 199

Hypoxemia and hyperoxemia 2 (16%) 9 (84%) 11

Normoxemia 302 (53%) 267 (47%) 569

Patients with combined exposure are also included in the separate
hyperoxemia or hypoxemia exposure groups
CPC cerebral performance category, CPC 1–2 good outcome, CPC 3–5
poor outcome
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Fig. 2 Boxplots depicting the distributional characteristics of PaO2 at 8 measurement points from admission to hospital to the end of
intervention time for the TTM 33 and TTM 36 groups (a) and the investigated combined cohort dichotomized into good and poor
outcome (b). Boxplot values are displayed as median, 25% quartiles from median and range. TTM, target temperature management. PaO2,
partial arterial oxygen pressure. kPa, kilopascal. Core body temperature, 33 °C or 36 °C. White circle denotes the outliers. Asterisk denotes
extreme outliers

Table 3 Data on oxygen tension analyses in the post cardiac arrest period

Variable All patients
n = 869

Hyperoxemia
n = 199

Normoxemia
n = 569

Hypoxemia
n = 112

Hyper- and hypoxemia
n = 11

TWM-PaO2 14.0 (12.2–16.2) 15.9 (14.1–18.2) 13.8 (12.2–15.6) 12.2 (10.7–14.0) 13.90 (12.7–15.3)

TWM-PaCO2 5.3 (4.9–5.7) 5.3 (4.9–5.7) 5.3 (4.9–5.7) 5.4 (5.0–6.0) 5.4 (5.2–5.6)

PaO2 T-1 19.0 (12.1–33.8) 52.7 (42.7–61.4) 16.9 (12.1–24.5) 9.6 (7.3–15.5) 37.8 (20.3–49.8)

PaO2 T0 17.1 (11.8–25.7) 38.8 (21.2–52.9) 16.0 (11.8–22.0) 11.1 (8.4–16.5) 41.5 (22.0–52.2)

PaO2 T4 15.2 (12.2–19.7) 16.5 (13.1–21.3) 15.1 (12.4–19.6) 12.4 (9.8–17.1) 14.6 (11.1–17.8)

PaO2 T12 13.2 (11.3–16.2) 13.7 (11.5–16.6) 13.2 (11.3–16.3) 12.0 (10.3–14.9) 11.7 (9.6–14.9)

PaO2 T20 12.7 (11.0–15.1) 12.9 (11.3–15.5) 12.7 (11.0–15.0) 12.1 (10.2–14.5) 12.1 (10.0–15.0)

PaO2 T28 11.9 (10.5–14.2) 12.0 (10.4–13.9) 12.2 (10.7–14.4) 10.9 (9.7–13.5) 10.9 (9.8–12.8)

PaO2 T32 11.7 (10.4–13.7) 11.7 (10.3–13.7) 11.9 (10.6–13.8) 10.8 (9.4–12.3) 9.8 (8.2–11.4)

PaO2 T36 11.3 (10.2–13.5) 11.4 (10.2–13.5) 11.5 (10.3–13.7) 10.4 (8.9–11.8) 9.2 (8.3–10.6)

TWM pH 7.35 (7.31–7.39) 7.35 (7.32–7.39) 7.35 (7.31–7.39) 7.33 (7.28–7.37) 7.35 (7.31–7.39)

TWM PAW 12.5 (10.3–16.6) 12.6 (10.3–15.6) 12.6 (10.2–16.9) 11.9 (10.5–15.4) 12.9 (11.1–14.2)

TWM- BE − 3.5 (−5.7 to − 1.5) − 3.6 (− 5.9 to − 1.6) − 3.6 (− 5.8 to − 1.5) − 3.2 (− 5.2 to − 1.5) − 3.65 (− 5.3 to − 2.2)

TWM-FiO2% 41.4 (34.9–49.7) 39.2 (33.8–45.0) 41.4 (34.7–49.4) 47.9 (39.0–59.3) 40.1 (34.3–50.6)

TWM-PaO2/FiO2 35.1 (26.8–43.8) 42.2 (34.2–50.0) 34.1 (26.8–42.3) 26.8 (20.4–34.7) 34.4 (27.2–43.3)

PaO2 arterial partial pressure of oxygen, PaCO2 arterial partial pressure of carbon dioxide. PaO2 and PaCO2 are displayed in kilopascal (kPa). Hyperoxemia PaO2 >
40 kPa, Hypoxemia PaO2 < 8 kPa, Normoxemia PaO2 values not defined hyper- or hypoxemia. TWM time weighted mean, PAW airway pressure, BE base excess, FiO2

fraction of inspired oxygen. Values are median with interquartile ranges (IQR). Patients exposed to hyper- and hypoxemia are also included in the separate
hyperoxemia and hypoxemia exposure groups. T measuring time point in hours after inclusion into the TTM trial, T-1 first blood gas analysis after admission but
before inclusion
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analyses (p = 0.307–0.969). Adding FiO2 as a confounder
to our primary analyses cohort did not significantly alter
outcome (p = 0.102–0.793). Details of the sensitivity ana-
lyses are displayed in Additional file 1: Tables S3–S6. FiO2

and PaO2 were weakly correlated (r = − 0.23).

Discussion
In this exploratory post hoc substudy of the TTM trial,
we investigated the association of PaO2 outside normal
ranges in the post cardiac arrest phase with poor neuro-
logical outcome 6months after OHCA and peak s-Tau
at either 48 or 72 h after ROSC. We found that 35% of
patients were exposed to hyperoxemia or hypoxemia fol-
lowing ROSC. We did not find statistically significant asso-
ciations between exposure to hyperoxemia or hypoxemia
with poor neurological outcome at 6-month follow-up. The
PaO2-TWM and maximum PaO2 difference analyses did
not show an association with neurological outcome. Our
findings did not indicate a PaO2 threshold value associated
with the onset of poor neurological outcome. We were not
able to detect an association between PaO2 and peak s-Tau
at either 48 or 72 h after ROSC.
Our data shows that exposure to PaO2 outside the nor-

mal range, especially hyperoxemia, was common and most
pronounced in the first hours after admission. This prob-
ably reflects clinical practice to continue ventilation with
high FiO2 after ROSC, thus causing a propensity for early
hyperoxemia, despite recommendations to titrate FiO2 to a
target SpO2 of 94–98% to avoid hyperoxemia [35].
A recent observational multicentre study by Roberts et

al. [23] found that exposure to early hyperoxemia, de-
fined by two protocol-directed blood gas samples within
the first 6 h after ROSC, was independently associated
with poor neurological outcome at hospital discharge,
corroborating results from a previous retrospective study
by the same group [15]. Additionally, they identified
PaO2 ≥ 40kPa as the threshold value for the association
between poor neurological outcome and PaO2. Our pri-
mary hyperoxemia analyses are comparable since hyper-
oxemia exposure occurred almost exclusively early and
the cut-off values of our threshold analysis are akin, but
we did not confirm the findings by Roberts et al. In con-
trast to our study, their cohort was smaller, including in-
and out-of-hospital cardiac arrest patients, follow-up
was shorter, and exposure to hyperoxemia was more
common (38% versus 23%).
Oxygen exposure over the first 24 h in a cohort of 409

OHCA patients treated with hypothermia to 33 °C was
investigated in a prospective observational study by Vaa-
hersalo et al. [22], showing in agreement with our
time-weighted mean analyses, no association between
oxygen exposure over time and neurological outcome.
However, several aspects of this study make direct com-
parison with our study difficult; in the study by Vaaher-
salo et al., only 6% of patients were exposed to a PaO2 >
40 kPa, and blood gases were not obtained by protocol
and analysed by pH and alpha-stat methods instead of
alpha-stat only.
The physiological cerebral vascular response to hyper-

oxemia is vasoconstriction, alteration of cerebral blood

Table 4 Multivariate model of hyperoxemia versus normoxemia
in relation to neurological outcome (CPC)

OR 95% CI p value

Hyperoxemia (normoxemia reference) 1.24 0.81–1.89 0.314

TTM group (33 °C reference) 0.99 0.70–1.41 0.976

Age (per year) 1.07 1.05–1.09 < 0.001

Sex (male reference) 1.36 0.85–2.17 0.200

Chronic heart failure (yes/no) 2.14 1.01–4.54 0.048

Asthma/COPD (yes/no) 1.29 0.70–2.36 0.410

Bystander witnessed arrest (yes/no) 0.61 0.35–1.07 0.087

Bystander CPR (yes/no) 0.88 0.58–1.34 0.550

Time to ROSC (per min) 1.03 1.02–1.04 < 0.001

GCS-Motor (1 vs 2–5) 0.40 0.28–0.57 < 0.001

Circulatory shock on admission (yes/no) 1.58 0.89–2.80 0.118

First rhythm shockable (yes/no) 0.19 0.11–0.34 < 0.001

pH (per unit increase) 0.38 0.10–1.49 0.164

CPC cerebral performance category, CPC 1–2 good outcome, CPC 3–5 poor
outcome, CI confidence interval. OR odds ratio, TTM target temperature
management, COPD chronic obstructive pulmonary disease, CPR
cardiopulmonary resuscitation. GCS-M Glasgow Coma Scale-Motor, ROSC return
of spontaneous circulation. OR < 1 indicates better outcome

Table 5 Multivariate model of hypoxemia versus normoxemia
in relation to neurological outcome (CPC)

OR 95% CI p value

Hypoxemia (normoxemia reference) 1.06 0.60–1.85 0.847

TTM group (33 °C reference) 1.00 0.69–1.46 0.981

Age (per year) 1.06 1.04–1.08 < 0.001

Sex (male reference) 1.57 0.94–2.62 0.082

Chronic heart failure (yes/no) 1.94 0.87–4.34 0.106

Asthma/COPD (yes/no) 1.41 0.75–2.67 0.287

Bystander witnessed arrest (yes/no) 0.55 0.29–1.05 0.068

Bystander CPR (yes/no) 0.98 0.62–1.54 0.926

Time to ROSC (per min) 1.03 1.02–1.05 < 0.001

GCS—Motor (1 vs 2–5) 0.52 0.35–0.76 < 0.001

Circulatory shock on admission (yes/no) 2.41 1.34–4.34 0.003

First rhythm shockable (yes/no) 0.16 0.09–0.29 < 0.001

pH (per unit increase) 0.22 0.05–0.90 0.035

CPC cerebral performance category, CPC 1–2 good outcome, CPC 3–5 poor
outcome, CI confidence interval, OR odds ratio, TTM target temperature
management, COPD chronic obstructive pulmonary disease, CPR
cardiopulmonary resuscitation, GCS-M Glasgow Coma Scale-Motor, ROSC return
of spontaneous circulation. OR < 1 indicates better outcome
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flow (CBF), and subsequently reduced regional oxygen
delivery [36, 37]. A study by Voicu et al. indicates that
this mechanism might be impaired in a proportion of
OHCA patients [38]. Two blood gas management strat-
egies, alpha-stat versus pH-stat, were investigated and
revealed an absence of change in CBF velocities between
the two modalities in non-survivors compared to survivors.
Furthermore, the non-survivor group also showed no dif-
ference in jugular vein oxygen saturation, arteriojugular
oxygen content, and cerebral oxygen extraction. This study
identifies a subgroup of OHCA patients with failed cerebral

vascular autoregulation and increased risk for secondary
brain injury due to possible cerebral hyperperfusion and
unregulated hyperoxemia exposure. Similar subgroups have
been described in previous studies [39, 40], highlighting the
heterogeneity of OHCA cohorts.
In a hypoxic state, neurons are unable to utilize oxida-

tive phosphorylation and are forced to resort to glycoly-
sis for ATP production which is a short lived rescue
mechanism before the onset of neuronal cell injury and
death [41]. This primary, hypoxic injury occurs during
OHCA and is together with the secondary, reperfusion
injury that begins immediately after ROSC regarded as
one of the major contributors to the post cardiac arrest
syndrome [6, 13], whilst the effects of prolonged hypox-
emia after ROSC are undetermined. In a non-OHCA co-
hort, well-trained acclimatized climbers were fully
functional at PaO2 levels as low as 2.54 kPa [42], and in a
canine model EEG readings were normal at PaO2 values
of 2.6 kPa, provided that no CBF impairment was present
[43]. Mechanisms of physiological acclimatization to hyp-
oxia and unimpaired CBF are implausible in adult OHCA
patients due to increased age and co-morbidities. Hence,
the PaO2 threshold for the onset of hypoxic neuronal de-
mise is presumably above the presented extreme values,
but also likely to be significantly lower than the 8 kPa cut
off employed in our and previous investigations, which
provides an explanation for the deviating results of studies
investigating hypoxemia [15, 17, 20, 21].

Fig. 3 Forrest plot showing the adjusted OR’s (bullet points) with 95% CI’s (horizontal lines) for poor neurological outcome according to Cerebral
Performance Category (CPC) for different PaO2 threshold values. OR, odds ratio. CI, confidence interval. PaO2, partial pressure of oxygen. kPa,
kilopascal. CPC, cerebral performance category. CPC 1-2, good outcome, CPC 3-5, poor outcome. ORs and CIs are presented on a logarithmic
scale. OR above 1.0 indicates worse outcome above the PaO2 threshold and OR below 1.0 indicates better outcome above the PaO2 threshold

Table 6 Peak s-Tau nested cohort analysis for the employed
multivariable PaO2 models

Multivariable model Estimate 95% CI p value

Hypoxemia vs no-hypoxemia* 0.74 0.42–1.30 0.296

Hypoxemia vs normoxemia* 0.69 0.39–1.22 0.198

Hyperoxemia vs no-hyperoxemia* 1.19 0.78–1.82 0.419

Hyperoxemia vs normoxemia* 1.09 0.71–1.69 0.687

Maximum PaO2 difference** 1.01 0.99–1.02 0.436

PaO2-TWM T-1 to T36** 1.04 0.98–1.10 0.231

PaO2-TWM T-1 to T12** 1.02 0.98–1.05 0.391

PaO2 arterial partial pressure of oxygen, CI confidence interval, s-Tau serum
Tau, TWM time-weighted mean, T measuring time point in hours after
inclusion into the TTM trial, T-1 first blood gas analysis after admission but
before inclusion. For analyses of categorical data*, the estimate indicates how
many times higher the s-Tau is compared to reference group. For analyses of
continuous data**, the estimate indicates how much higher s-Tau is per 1 kPa
PaO2 increase
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In the present study, we did not find an association
between PaO2 and peak s-Tau levels, which supports the
lack of association between PaO2 and neurological out-
come. S-Tau is in the context of OHCA, a novel bio-
marker for neuronal injury, and the 48- and 72-h peak
level is a significantly better clinical predictor for neuro-
logical outcome after 6 months than neuron-specific
enolase (NSE) or clinical information alone [30].
In summary, clinical observational studies investigating

hyperoxemia and hypoxemia differ in outcome, possibly
due to patient selection, sampling and analysis method-
ology, and random error. Observational studies are not
showing associations with a better outcome after hyperox-
emia or hypoxemia exposure, but clinical randomized tri-
als randomizing patients to PaO2 values outside normal
ranges are lacking and would be a plausible next step to
further investigate the influence of PaO2 on outcome.

Study limitations and strengths
In this study, we employed different analytic approaches
to test the association of serial PaO2 measurements in
resuscitated comatose patients after OHCA with func-
tional parameters and biomarkers as outcome. The
present study was conceived after completion of the
TTM trial, and due to the nature of this exploratory,
post hoc substudy, all results must be regarded as hy-
pothesis generating and we cannot make causality state-
ments from our findings. Considering the direction of
the ORs and the widths of the CIs of our analyses, we
cannot rule out possible associations. Threshold values
for the detrimental effects of hyperoxemia or hypoxemia
are undetermined; therefore, we accepted values in
keeping with previous studies. For this study, we hypoth-
esized that oxygen pressure in-between PaO2 measure-
ment was linear and we were not able to account for
short-term variations of PaO2. FiO2 management in the
primary study was not protocolized and at the physi-
cian’s discretion. Our study nevertheless has consider-
able strengths. The investigated cohort of 939 OHCA
was homogenous and large, and patients were selected
from a multicenter randomized clinical trial with liberal
inclusion criteria and a trial protocol reflecting standard
practice. All physiological and biochemical parameters
were collected prospectively, according to a pre-defined
time-based protocol, eliminating measurement bias.
Blood gases were analysed by a uniform method. Our
results were adjusted for in the context of OHCA im-
portant confounders. The findings of this study were
strengthened by an all-patient, a complete case, and an
all-cause mortality sensitivity analysis, additionally sup-
ported by using a biomarker. The association of PaO2

outside normal ranges after OHCA with a biomarker of
neurological injury has to our knowledge not previously
been investigated.

Follow-up data was acquired using a structured proto-
col, with a majority performed face-to-face, and a min-
imal loss of patients in the follow-up period [24].

Conclusion
Although exposure to hyperoxemia and hypoxemia fol-
lowing OHCA was common in this study, we found
hyperoxemia, hypoxemia, time-weighted mean oxygen
exposure, and maximum partial pressure of oxygen dif-
ference not to be independently associated with neuro-
logical outcome at 6-month follow-up or with s-Tau at
either 48 or 72 h after ROSC. Our findings did not indi-
cate a PaO2 threshold value for the onset of poor neuro-
logical outcome.

Additional file

Additional file 1: Associations between partial pressure of oxygen and
neurological outcome in out-of-hospital cardiac arrest patients: an ex-
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methods, explanatory figure and tables depicting detailed information
on missing patients, interaction analysis, and sensitivity analyses.
(DOCX 82 kb)
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