20 research outputs found
Brief for the United States as Amicus Curiae in Support of Neither Party
Amicus ("friend of the court") brief written by the United States in support of petitioners in AMP v. Myriad Genetics (Supreme Court Case Docket No. 12-398)
Filaggrin Genotype Determines Functional and Molecular Alterations in Skin of Patients with Atopic Dermatitis and Ichthyosis Vulgaris
BACKGROUND: Several common genetic and environmental disease mechanisms are important for the pathophysiology behind atopic dermatitis (AD). Filaggrin (FLG) loss-of-function is of great significance for barrier impairment in AD and ichthyosis vulgaris (IV), which is commonly associated with AD. The molecular background is, however, complex and various clusters of genes are altered, including inflammatory and epidermal-differentiation genes. OBJECTIVE: The objective was to study whether the functional and molecular alterations in AD and IV skin depend directly on FLG loss-of-function, and whether FLG genotype determines the type of downstream molecular pathway affected. METHODS AND FINDINGS: Patients with AD/IV (n = 43) and controls (n = 15) were recruited from two Swedish outpatient clinics and a Swedish AD family material with known FLG genotype. They were clinically examined and their medical history recorded using a standardized questionnaire. Blood samples and punch biopsies were taken and trans-epidermal water loss (TEWL) and skin pH was assessed with standard techniques. In addition to FLG genotyping, the STS gene was analyzed to exclude X-linked recessive ichthyosis (XLI). Microarrays and quantitative real-time PCR were used to compare differences in gene expression depending on FLG genotype. Several different signalling pathways were altered depending on FLG genotype in patients suffering from AD or AD/IV. Disease severity, TEWL and pH follow FLG deficiency in the skin; and the number of altered genes and pathways are correlated to FLG mRNA expression. CONCLUSIONS: We emphasize further the role of FLG in skin-barrier integrity and the complex compensatory activation of signalling pathways. This involves inflammation, epidermal differentiation, lipid metabolism, cell signalling and adhesion in response to FLG-dependent skin-barrier dysfunction
Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions
Parasites of the genus Leishmania are the causative agents of leishmaniasis, a group of diseases that range in manifestations from skin lesions to fatal visceral disease. The life cycle of Leishmania parasites is split between its insect vector and its mammalian host, where it resides primarily inside of macrophages. Once intracellular, Leishmania parasites must evade or deactivate the host's innate and adaptive immune responses in order to survive and replicate. We performed transcriptome profiling using RNA-seq to simultaneously identify global changes in murine macrophage and L. major gene expression as the parasite entered and persisted within murine macrophages during the first 72 h of an infection. Differential gene expression, pathway, and gene ontology analyses enabled us to identify modulations in host and parasite responses during an infection. The most substantial and dynamic gene expression responses by both macrophage and parasite were observed during early infection. Murine genes related to both pro- and anti-inflammatory immune responses and glycolysis were substantially upregulated and genes related to lipid metabolism, biogenesis, and Fc gamma receptor-mediated phagocytosis were downregulated. Upregulated parasite genes included those aimed at mitigating the effects of an oxidative response by the host immune system while downregulated genes were related to translation, cell signaling, fatty acid biosynthesis, and flagellum structure. The gene expression patterns identified in this work yield signatures that characterize multiple developmental stages of L. major parasites and the coordinated response of Leishmania-infected macrophages in the real-time setting of a dual biological system. This comprehensive dataset offers a clearer and more sensitive picture of the interplay between host and parasite during intracellular infection, providing additional insights into how pathogens are able to evade host defenses and modulate the biological functions of the cell in order to survive in the mammalian environment.https://doi.org/10.1186/s12864-015-2237-
Recommended from our members
A Choice Experiment of Wyoming Residents’ Preferences Toward Water Resilience Improvement Programs
Environmental Performance and the Cost of Capital: Evidence from Commercial Mortgages and REIT Bonds
Integrated host and viral transcriptome analyses reveal pathology and inflammatory response mechanisms to ALV-J injection in SPF chickens
Avian leukosis virus (ALV) is detrimental to poultry health and causes substantial economic losses from mortality and decreased performance. Because tumorigenesis is a complex mechanism, the regulatory architecture of the immune system is likely to include the added dimensions of modulation by miRNAs and long-noncoding RNA (lncRNA). To characterize the response to ALV challenge, we developed a novel methodology that combines four datasets: mRNA expression and the associated regulatory factors of miRNA and lncRNA, and ALV gene expression. Specific Pathogen-Free (SPF) layer chickens were infected with ALV-J or maintained as non-injected controls. Spleen samples were collected at 40 days post injection (dpi), and sequenced. There were 864 genes, 7 miRNAs and 17 lncRNAs differentially expressed between infected and non-infected birds. The combined analysis of the 4 RNA expression datasets revealed that ALV infection is detected by pattern-recognition receptors (TLR9 and TLR3) leading to a type-I IFN mediated innate immune response that is modulated by IRF7 and IRF1. Co-expression network analysis of mRNA with miRNA, lncRNA and virus genes identified key elements within the complex networks utilized during ALV response. The integration of information from the host transcriptomic, epigenetic and virus response also has the potential to provide deeper insights into other host-pathogen interactions
Comparative Transcriptomics of the Saprobic and Parasitic Growth Phases in <em>Coccidioides</em> spp
<div><p><em>Coccidioides immitis</em> and <em>C. posadasii</em>, the causative agents of coccidioidomycosis, are dimorphic fungal pathogens, which grow as hyphae in the saprobic phase in the environment and as spherules in the parasitic phase in the mammalian host. In this study, we use comparative transcriptomics to identify gene expression differences between the saprobic and parasitic growth phases. We prepared Illumina mRNA sequencing libraries for saprobic-phase hyphae and parasitic-phase spherules <em>in vitro</em> for <em>C. immitis</em> isolate RS and <em>C. posadasii</em> isolate C735 in biological triplicate. Of 9,910 total predicted genes in <em>Coccidioides</em>, we observed 1,298 genes up-regulated in the saprobic phase of both <em>C. immitis</em> and <em>C. posadasii</em> and 1,880 genes up-regulated in the parasitic phase of both species. Comparing the saprobic and parasitic growth phases, we observed considerable differential expression of cell surface-associated genes, particularly chitin-related genes. We also observed differential expression of several virulence factors previously identified in <em>Coccidioides</em> and other dimorphic fungal pathogens. These included alpha (1,3) glucan synthase, SOWgp, and several genes in the urease pathway. Furthermore, we observed differential expression in many genes predicted to be under positive selection in two recent <em>Coccidioides</em> comparative genomics studies. These results highlight a number of genes that may be crucial to dimorphic phase-switching and virulence in <em>Coccidioides</em>. These observations will impact priorities for future genetics-based studies in <em>Coccidioides</em> and provide context for studies in other fungal pathogens.</p> </div