76 research outputs found

    Case report: an unexpected link between partial deletion of the SHANK3 gene and Heller’s dementia infantilis, a rare subtype of autism spectrum disorder

    Get PDF
    International audienceAbstractBackgroundDeletions and mutations involving the SHANK3 gene lead to a nonspecific clinical presentation with moderate to profound intellectual disability, severely delayed or absent speech, and autism spectrum disorders (ASD).Better knowledge of the clinical spectrum of SHANK3 haploinsufficiency is useful to facilitate clinical care monitoring and to guide molecular diagnosis, essential for genetic counselling.Case presentationHere, we report a detailed clinical description of a 10-year-old girl carrying a pathogenic interstitial 22q13.3 deletion encompassing only the first 17 exons of SHANK3.The clinical features displayed by the girl strongly suggested the diagnosis of dementia infantilis, described by Heller in 1908, also known as childhood disintegrative disorder.ConclusionOur present case confirms several observations according to which regression may be part of the clinical phenotype of SHANK3 haploinsufficiency. Therefore, we think it is crucial to look for mutations in the gene SHANK3 in patients diagnosed for childhood disintegrative disorder or any developmental disorder with a regressive pattern involving social and communicative skills as well as cognitive and instinctual functions, with onset around 3 years

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    X-linked Malformation and Cochlear Implantation

    No full text
    Objective: To evaluate if cochlear implantation is safe and constitutes an option for hearing rehabilitation of children with x-linked inner ear malformation. Study Design: Retrospective patient review in combination with a multidisciplinary follow-up. Patients: Ten children with severe-profound mixed hearing loss and radiological findings consistent with Incomplete Partition type 3 cochlear malformation received cochlear implants during the years 2007 to 2015. Nine of the children had a mutation affecting the gene POU3F4 on Xq21. Main Outcome Measures: Surgical events, intraoperative measures and electrical stimulation levels, hearing and spoken language abilities. Results: In all, 15 cochlear implantations were performed. In three cases the electrode was found to be in the internal auditory canal on intraoperative x-ray and repositioned successfully. One child had a postoperative rhinorrhea confirmed to be cerebrospinal fluid but this resolved on conservative treatment. No severe complications occurred. Postoperative electrical stimulation levels were higher in 9 of 10 children, as compared with typically reported average levels in patients with a normal cochlea. Eight patients developed spoken language to various degrees while two were still at precommunication level. However, speech recognition scores were lower than average pediatric cases. Conclusion: Cochlear implantation is a safe procedure for children with severe-profound mixed hearing loss related to POU3F4 mutation inner ear malformation. The children develop hearing and spoken language but outcome is below average for pediatric CI recipients

    Minor physical anomalies in neurodevelopmental disorders: A twin study

    Get PDF
    Background: Minor physical anomalies (MPAs) are subtle anatomical deviations in one's appearance and may suggest altered embryogenesis. MPAs have been shown to be more common in neurodevelopmental disorders (NDDs) compared with typical development. Still, further studies are needed on MPAs in NDDs, especially using twins to adjust for confounding familial factors. Methods: Clinical assessments were conducted on 116 twins (61 NDD, 55 controls) from 51 monozygotic and 7 dizygotic pairs to examine MPAs and their association with DSM-5 defined NDDs. Additionally, the relationship between the number of MPAs within twins by zygosity was investigated. Results: Within the cohort sample, a specific association was found between MPAs and autism spectrum disorder (ASD) diagnosis (crude odds ratio = 1.29, p = .047; adjusted odds ratios = 1.26-1.33, adjusted p values = .032-.073) and autistic traits (crude ß = 3.02, p = .002; adjusted ß = 2.28, p = .019), but not NDDs in general or ADHD, nor within-pairs. Identified MPAs in ASD included overweight, hypermobility, pes planus, straight eyebrows, vision impairment, arachnodactyly/long toes, long eyelashes, and microtia. The number of MPAs within all monozygotic pairs was highly correlated (r = .88, p < .001). Conclusion: MPAs are more frequent in participants with ASD and may be influenced by genetics. The value of MPAs for (early) detection should be further explored, as they might index individuals at increased risk for ASD in particular

    Prenatal ultrasound and childhood autism: long-term follow-up after a randomized controlled trial of first-vs-second-trimester ultrasound

    No full text
    Objective: To analyze whether the frequency of autism spectrum disorder (ASD) in a cohort of Swedish children differs between those exposed to ultrasound in the 12th week and those exposed to ultrasound in the 18th week of gestation. Methods: The study cohort consisted of approximately 30 000 children born between 1999 and 2003 to mothers who had been randomized to a prenatal ultrasound examination at either 12 or 18 weeks' gestation as part of the framework for a study on nuchal translucency screening. The outcome measure in the present study was the rate of ASD diagnoses among the children. Information on ASD diagnoses was based on data from the Swedish social insurance agency concerning childcare allowance granted for ASD. Results: Between 1999 and 2003, a total of 14 726 children were born to women who underwent a 12‐week ultrasound examination and 14 596 to women who underwent an 18‐week ultrasound examination. Of these, 181 (1.2%) and 176 (1.2%) children, respectively, had been diagnosed with ASD. There was no difference in ASD frequency between the early and late ultrasound groups. Conclusions: Women subjected to at least one prenatal ultrasound examination at either 12 or 18 weeks' gestation had children with similar rates of ASD. However, this result reflects routine care 10–15 years ago in Sweden. Today, higher intensity ultrasound scans are performed more frequently, at earlier stages during pregnancy and for non‐medical purposes, implying longer exposure time for the fetus. This change in the use of ultrasound necessitates further follow‐up study of the possible effects that high exposure to ultrasound during the gestational period has on the developing brain

    Detection and delineation of an unusual 17p11.2 deletion by array-CGH and refinement of the Smith-Magenis syndrome minimum deletion to similar to 650 kb

    No full text
    Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced I (RAII) gene, located within the SMS critical interval. Happloinsufficiency of the RAII gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAII gene. This case enabled the refinement of the SMS minimum deletion to similar to 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAII in SMS patients

    Copy Number Variation Analysis of 100 Twin Pairs Enriched for Neurodevelopmental Disorders

    No full text
    Copyright © The Author(s) 2018 Hundreds of penetrant risk loci have been identified across different neurodevelopmental disorders (NDDs), and these often involve rare ( < 1% frequency) copy number variations (CNVs), which can involve one or more genes. Monozygotic (MZ) twin pairs are long thought to share 100% of their genomic information. However, genetic differences in the form of postzygotic somatic variants have been reported recently both in typically developing (TD) and in clinically discordant MZ pairs. We sought to investigate the contribution of rare CNVs in 100 twin pairs enriched for NDD phenotypes with a particular focus on postzygotic CNVs in MZ pairs discordant for autism spectrum disorder (ASD) using the Illumina Infinium PsychArray. In our sample, no postzygotic de novo CNVs were found in 55 MZ twin pairs, including the 13 pairs discordant for ASD. We did detect a higher rate of CNVs overlapping genes involved in disorders of the nervous system, such as a rare deletion affecting HNRNPU, in MZ pairs discordant and concordant for ASD in comparison with TD pairs (p = .02). Our results are in concordance with earlier findings that postzygotic de novo CNV events are typically rare in genomic DNA derived from saliva or blood, and suggests that the discordance of NDDs in our sample of twins is not explained by discordant CNVs. Still, studies investigating postzygotic variation in MZ discordant twins using DNA from different tissues and single cells and higher resolution genomics are needed in the future
    corecore