34 research outputs found

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Direct constraint on the Higgs–charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector

    Get PDF
    A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton–proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of and recorded by the ATLAS detector corresponds to an integrated luminosity of 139 fb−1. Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW, WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the (W/Z)Z(→cc¯) process and 3.8 (4.6) standard deviations for the (W/Z)W(→cq) process. The (W/Z)H(→cc¯) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of , corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier |κc|<8.5 (12.4), at the 95% confidence level. A combination with the ATLAS (W/Z)H,H→bb¯ analysis is performed, allowing the ratio κc/κb to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level

    Accuracy versus precision in boosted top tagging with the ATLAS detector

    Get PDF
    Abstract The identification of top quark decays where the top quark has a large momentum transverse to the beam axis, known as top tagging, is a crucial component in many measurements of Standard Model processes and searches for beyond the Standard Model physics at the Large Hadron Collider. Machine learning techniques have improved the performance of top tagging algorithms, but the size of the systematic uncertainties for all proposed algorithms has not been systematically studied. This paper presents the performance of several machine learning based top tagging algorithms on a dataset constructed from simulated proton-proton collision events measured with the ATLAS detector at √ s = 13 TeV. The systematic uncertainties associated with these algorithms are estimated through an approximate procedure that is not meant to be used in a physics analysis, but is appropriate for the level of precision required for this study. The most performant algorithms are found to have the largest uncertainties, motivating the development of methods to reduce these uncertainties without compromising performance. To enable such efforts in the wider scientific community, the datasets used in this paper are made publicly available.</jats:p

    Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of the electroweak production of two jets in association with a ZγZ\gamma pair with the ZZ boson decaying into two neutrinos. It also presents the search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at s\sqrt{s} = 13 TeV collected with the ATLAS detector corresponding to an integrated luminosity of 139 fb1^{-1}. The event signature, shared by all benchmark processes considered for measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. For electroweak production of ZγZ\gamma in association with two jets, the background-only hypothesis is rejected with an observed (expected) significance of 5.2 (5.1) standard deviations. The measured fiducial cross-section for this process is 1.31±\pm0.29 fb. Observed (expected) upper limit of 0.37 (0.34) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson to a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 (0.017), assuming the 125 GeV Standard Model Higgs boson production cross-section

    A search for an unexpected asymmetry in the production of e + μ − and e − μ + pairs in proton–proton collisions recorded by the ATLAS detector at s = 13 TeV

    No full text

    Search for exclusive Higgs and Z boson decays to ωγ and Higgs boson decays to K ⁎ γ with the ATLAS detector

    Get PDF
    Searches for the exclusive decays of the Higgs boson to an ω meson and a photon or a K⁎ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous Z boson decay to an ω meson and a photon, are performed with a pp collision data sample corresponding to integrated luminosities of up to 134 fb−1 collected at √s=13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are B(H→ωγ)&lt;5.5×10−4, B(H→K⁎γ)&lt;2.2×10−4 and B(Z→ωγ)&lt;3.9×10−6. The limits for H→ωγ and Z→ωγ are 370 times and 140 times the Standard Model expected values, respectively. The result for Z→ωγ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP

    Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    No full text

    Measurement of the t t ¯ cross section and its ratio to the Z production cross section using pp collisions at s = 13.6 TeV with the ATLAS detector

    No full text

    Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC

    Get PDF
    International audienceMeasurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analysesare subject to `fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-leptonselection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particleinteractions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods.Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance

    Search for the charged-lepton-flavor-violating decay Z→eμ in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    corecore