16 research outputs found

    Some features of the diagnosis and clinical manifestations of pathological fractures of the spine in Bekhterev's disease (а clinical case)

    Get PDF
    Background: A prolonged course of the autoimmune inflammatory process in Bekhterev's disease is accompanied by calcification of the vertebral column’s ligaments, damage to the costovertebral and true joints of the spine, and their ankylosis, that ultimately leads to a decrease in the support capacity of the spine, so that even a minor injury can lead to a fracture. Spinal fractures in ankylosing spondylitis often have an unstable character and a high risk of the spinal cord injury. The main methods for diagnosing the spinal instability in Bekhterev's disease are multispiral computed tomography and magnetic resonance imaging, since the informative significance of survey radiography is not high. An early surgical treatment is the method of choice for unstable fractures in ankylosing spondylitis, despite the comorbid pathology and age, which significantly burden the prognosis. Сlinical case description: Patient K., born in 1969, injured on October 07, 2021 as a result of falling on his back from a height of 2 meters. An MSCT study of the thoracolumbar spine revealed a fracture of the ThXII–LI vertebrae, rupture of the anterior longitudinal ligament, and instability of the ThXII–LI vertebral-motor segment. The following diagnosis was established: closed uncomplicated injury of the thoracolumbar spine; grade I unstable compression fracture of the ThXII, LI vertebrae with a damage to the posterior support complex against the background of ankylosing spondylitis; grade I kyphotic deformity of the thoracolumbar spine; bilateral vertebrogenic lumboishialgia syndrome; pronounced persistent pain and muscle-tonic syndromes. A surgical treatment was applied which included correction of the spinal deformity and stabilization of the thoracolumbar spine using a transpedicular fixation system. The pain vertebrogenic syndrome and clinical neurological disorders regressed. The MSCT control was carried out in 6 months with the detected completed fusion at the ThXII–LI level. Conclusion: A timely diagnosis using multispiral computed tomography and magnetic resonance imaging data allows us to assess the full picture of traumatic changes in the spinal column and choose the most effective type of surgical intervention, using, if necessary, stabilizing systems

    Globally invariant metabolism but density-diversity mismatch in springtails.

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p

    Globally invariant metabolism but density-diversity mismatch in springtails

    No full text
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.ISSN:2041-172

    Global fine-resolution data on springtail abundance and community structure

    No full text
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data

    Globally invariant metabolism but density-diversity mismatch in springtails

    No full text
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning
    corecore