23 research outputs found

    Glycosylation tunes neuroserpin physiological and pathological properties

    Get PDF
    Neuroserpin (NS) is a member of the serine protease inhibitors superfamily. Specific point mutations are responsible for its accumulation in the endoplasmic reticulum of neurons that leads to a pathological condition named familial encephalopathy with neuroserpin inclusion bodies (FENIB). Wild-type NS presents two N-glycosylation chains and does not form polymers in vivo, while non-glycosylated NS causes aberrant polymer accumulation in cell models. To date, all in vitro studies have been conducted on bacterially expressed NS, de facto neglecting the role of glycosylation in the biochemical properties of NS. Here, we report the expression and purification of human glycosylated NS (gNS) using a novel eukaryotic expression system, LEXSY. Our results confirm the correct N-glycosylation of wild-type gNS. The fold and stability of gNS are not altered compared to bacterially expressed NS, as demonstrated by the circular dichroism and intrinsic tryptophan fluorescence assays. Intriguingly, gNS displays a remarkably reduced polymerisation propensity compared to non-glycosylated NS, in keeping with what was previously observed for wild-type NS in vivo and in cell models. Thus, our results support the relevance of gNS as a new in vitro tool to study the molecular bases of FENIB

    Structural basis of L -phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase

    No full text
    Phosphoserine aminotransferase is a vitamin B6-dependent enzyme that catalyzes the reversible conversion of 3-­phosphohydroxypyruvate to L-phosphoserine using glutamate as an amine donor. In an effort to gain insight into the substrate-recognition mechanism of the enzyme, crystal structures of Bacillus alcalophilus phosphoserine aminotransferase in the presence or absence of L-phosphoserine were determined to resolutions of 1.5 and 1.6 Å, respectively. Local conformational changes induced upon substrate binding were identified. However, in contrast to other aminotransferases, no domain or subunit movements were observed. Two Arg residues (Arg42 and Arg328) and two His residues (His41 and His327) were found to form a tight binding site for the phosphate group of L-­phosphoserine. Comparison with Escherichia coli phosphoserine aminotransferase in complex with the substrate analogue [alpha]-­methylglutamate revealed more extensive structural changes in the case of L-phosphoserine binding. Based on the structural analysis, the flexibility of Arg328 is proposed to be critical for substrate recognition

    Five commercially-available antibodies react differentially with allelic forms of human HLA-DR beta chain

    No full text
    Allelic variants of HLA-DRB1 have been associated with a variety of autoimmune and infectious diseases. Although the precise molecular mechanisms by which HLA-DRB1 alleles predispose to a particular disease are currently unclear, it has been shown that mRNA expression levels of HLA-DRB1 are dependent on the different alleles. We aimed to measure HLA-DR beta chain levels in peripheral blood mononuclear cells of individuals carrying HLA-DRB1*03:01/*04:01 and HLA-DRB1*03:01/*15:01 alleles by western blotting, using five commercially-available HLA-DRB antibodies. We observed highly heterogeneous binding of the tested antibodies to the different allelic forms of the HLA-DR beta chain. Overall, we show that current immunological research that employs available antibodies to detect HLA-DR beta chains is biased towards detection of specific variants of the protein; this may cause significant discrepancy in quantification of protein expression in a heterogeneous human population

    A rapid CRISPR competitive assay for in vitro and in vivo discovery of potential drug targets affecting the hematopoietic system

    No full text
    CRISPR/Cas9 can be used as an experimental tool to inactivate genes in cells. However, a CRISPR-targeted cell population will not show a uniform genotype of the targeted gene. Instead, a mix of genotypes is generated - from wild type to different forms of insertions and deletions. Such mixed genotypes complicate analysis of the role of the targeted gene in the studied cell population. Here, we present a rapid and universal experimental approach to functionally analyze a CRISPR-targeted cell population that does not involve generating clonal lines. As a simple readout, we leverage the CRISPR-induced genetic heterogeneity and use sequencing to identify how different genotypes are enriched or depleted in relation to the studied cellular behavior or phenotype. The approach uses standard PCR, Sanger sequencing, and a simple sequence deconvoluting software, enabling laboratories without specific in-depth experience to perform these experiments. As proof of principle, we present examples studying various aspects related to hematopoietic cells (T cell development in vivo and activation in vitro, differentiation of macrophages and dendritic cells, as well as a leukemia-like phenotype induced by overexpressing a proto-oncogene). In conclusion, we present a rapid experimental approach to identify potential drug targets related to mature immune cells, as well as normal and malignant hematopoiesis.Nanyang Technological UniversityPublished versionWe are grateful to Drs. Helena Malmgren, Lisa Westerberg, Taras Kreslavskiy, Laura Plant and Sudeepta Panda for valuable discussions and input. The ER-Hoxb8 construct was a gift from Mark P. Kamps, University of California, San Diego. The pSIRV-NF-jBeGFP construct was a gift from Peter Steinberger, Medical University of Vienna. This research was partly funded by grants from the Swedish Research Council, the Swedish Cancer Society, Karolinska Institutet, Magnus Bergvalls stiftelse, Stiftelsen Professor Nanna Svartz fond, Felix Mindus contribution to Leukemia Research (to FW), the China Scholarship Council (to LJ and YS), and the Nanyang Y. Shen, L. Jiang, Vaishnavi Srinivasan Iyer et al. Computational and Structural Biotechnology Journal 19 (2021) 5360–5370 5369 Technological University–Karolinska Institutet Joint PhD Programme (to VSI)

    A hexameric peptide barrel as building block of amyloid-β protofibrils

    No full text
    Oligomeric and protofibrillar aggregates formed by the amyloid-β peptide (Aβ) are believed to be involved in the pathology of Alzheimer’s disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40. Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid-state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel-like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C-terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40

    Amyloid-β Protofibrils: Size, Morphology and Synaptotoxicity of an Engineered Mimic

    No full text
    <div><p>Structural and biochemical studies of the aggregation of the amyloid-β peptide (Aβ) are important to understand the mechanisms of Alzheimer's disease, but research is complicated by aggregate inhomogeneity and instability. We previously engineered a hairpin form of Aβ called Aβcc, which forms stable protofibrils that do not convert into amyloid fibrils. Here we provide a detailed characterization of Aβ<sub>42</sub>cc protofibrils. Like wild type Aβ they appear as smooth rod-like particles with a diameter of 3.1 (±0.2) nm and typical lengths in the range 60 to 220 nm when observed by atomic force microscopy. Non-perturbing analytical ultracentrifugation and nanoparticle tracking analyses are consistent with such rod-like protofibrils. Aβ<sub>42</sub>cc protofibrils bind the ANS dye indicating that they, like other toxic protein aggregates, expose hydrophobic surface. Assays with the OC/A11 pair of oligomer specific antibodies put Aβ<sub>42</sub>cc protofibrils into the same class of species as fibrillar oligomers of wild type Aβ. Aβ<sub>42</sub>cc protofibrils may be used to extract binding proteins in biological fluids and apolipoprotein E is readily detected as a binder in human serum. Finally, Aβ<sub>42</sub>cc protofibrils act to attenuate spontaneous synaptic activity in mouse hippocampal neurons. The experiments indicate considerable structural and chemical similarities between protofibrils formed by Aβ<sub>42</sub>cc and aggregates of wild type Aβ<sub>42</sub>. We suggest that Aβ<sub>42</sub>cc protofibrils may be used in research and applications that require stable preparations of protofibrillar Aβ.</p></div
    corecore