9 research outputs found

    Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    Get PDF
    BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE βgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEβgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms.Fil: Romera, Sonia. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; ArgentinaFil: Puntel, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Quattrocchi, Valeria. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: del Medico Zajac, Maria Paula. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: Zamorano, Patricia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blanco Viera, Javier. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: Carrillo, Consuelo. USDA. Plum Island Animal Disease Center; Estados UnidosFil: Chowdhury, Shafiqul. Louisiana State University. Department of Pathobiological Sciences; Estados UnidosFil: Borca, Manuel V.. USDA. Plum Island Animal Disease Center; Estados UnidosFil: Sadir, Ana M.. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Modulation of Syndecan-1 Shedding after Hemorrhagic Shock and Resuscitation

    Get PDF
    The early use of fresh frozen plasma as a resuscitative agent after hemorrhagic shock has been associated with improved survival, but the mechanism of protection is unknown. Hemorrhagic shock causes endothelial cell dysfunction and we hypothesized that fresh frozen plasma would restore endothelial integrity and reduce syndecan-1 shedding after hemorrhagic shock. A prospective, observational study in severely injured patients in hemorrhagic shock demonstrated significantly elevated levels of syndecan-1 (554±93 ng/ml) after injury, which decreased with resuscitation (187±36 ng/ml) but was elevated compared to normal donors (27±1 ng/ml). Three pro-inflammatory cytokines, interferon-γ, fractalkine, and interleukin-1β, negatively correlated while one anti-inflammatory cytokine, IL-10, positively correlated with shed syndecan-1. These cytokines all play an important role in maintaining endothelial integrity. An in vitro model of endothelial injury then specifically examined endothelial permeability after treatment with fresh frozen plasma orlactated Ringers. Shock or endothelial injury disrupted junctional integrity and increased permeability, which was improved with fresh frozen plasma, but not lactated Ringers. Changes in endothelial cell permeability correlated with syndecan-1 shedding. These data suggest that plasma based resuscitation preserved endothelial syndecan-1 and maintained endothelial integrity, and may help to explain the protective effects of fresh frozen plasma after hemorrhagic shock

    The Early Protective Thymus-Independent Antibody Response to Foot-and-Mouth Disease Virus Is Mediated by Splenic CD9+ B Lymphocytesâ–¿

    No full text
    Infection of mice with cytopathic foot-and-mouth disease virus (FMDV) induces a rapid and specific thymus-independent (TI) neutralizing antibody response that promptly clears the virus. Herein, it is shown that FMDV-infected dendritic cells (DCs) directly stimulate splenic innate-like CD9+ B lymphocytes to rapidly (3 days) produce neutralizing anti-FMDV immunoglobulin M antibodies without T-lymphocyte collaboration. In contrast, neither follicular (CD9−) B lymphocytes from the spleen nor B lymphocytes from lymph nodes efficiently respond to stimulation with FMDV-infected DCs. The production of these protective neutralizing antibodies is dependent on DC-derived interleukin-6 (IL-6) and on CD9+ cell-derived IL-10 secretion. In comparison, DCs loaded with UV-inactivated FMDV are significantly less efficient in directly stimulating B lymphocytes to secrete TI antibodies. A critical role of the spleen in the early production of anti-FMDV antibodies in infected mice was also demonstrated in vivo. Indeed, either splenectomy or functional disruption of the marginal zone of the spleen delays and reduces the magnitude of the TI anti-FMDV antibody response in infected mice. Together, these results indicate that in addition to virus localization, the FMDV-mediated modulation of DC functionality is a key parameter that collaborates in the induction of a rapid and protective TI antibody response against this virus

    Induction of a Protective Antibody Response to Foot and Mouth Disease Virus in Mice Following Oral or Parenteral Immunization with Alfalfa Transgenic Plants Expressing the Viral Structural Protein VP1

    Get PDF
    AbstractThe utilization of transgenic plants expressing recombinant antigens to be used in the formulation of experimental immunogens has been recently communicated. We report here the development of transgenic plants of alfalfa expressing the structural protein VP1 of foot and mouth disease virus (FMDV). The presence of the transgenes in the plants was confirmed by PCR and their specific transcription was demonstrated by RT-PCR. Mice parenterally immunized using leaf extracts or receiving in their diet freshly harvested leaves from the transgenic plants developed a virus-specific immune response. Animals immunized by either method elicited a specific antibody response to a synthetic peptide representing amino acid residues 135–160 of VP1, to the structural protein VP1, and to intact FMDV particles. Additionally, the immunized mice were protected against experimental challenge with the virus. We believe this is the first report demonstrating the induction of a protective systemic antibody response in animals fed transgenic plants expressing a viral antigen. These results support the feasibility of producing edible vaccines in transgenic forage plants, such as alfalfa, commonly used in the diet of domestic animals even for those antigens for which a systemic immune response is required
    corecore