10 research outputs found
Rac1-Dependent Phosphorylation and Focal Adhesion Recruitment of Myosin IIA Regulates Migration and Mechanosensing
SummaryBackgroundCell migration requires coordinated formation of focal adhesions (FAs) and assembly and contraction of the actin cytoskeleton. Nonmuscle myosin II (MII) is a critical mediator of contractility and FA dynamics in cell migration. Signaling downstream of the small GTPase Rac1 also regulates FA and actin dynamics, but its role in regulation of MII during migration is less clear.ResultsWe found that Rac1 promotes association of MIIA with FA. Live-cell imaging showed that, whereas most MIIA at the leading edge assembled into dorsal contractile arcs, a substantial subset assembled in or was captured within maturing FA, and this behavior was promoted by active Rac1. Protein kinase C (PKC) activation was necessary and sufficient for integrin- and Rac1-dependent phosphorylation of MIIA heavy chain (HC) on serine1916 (S1916) and recruitment to FA. S1916 phosphorylation of MIIA HC and localization in FA was enhanced during cell spreading and ECM stiffness mechanosensing, suggesting upregulation of this pathway during physiological Rac1 activation. Phosphomimic and nonphosphorylatable MIIA HC mutants demonstrated that S1916 phosphorylation was necessary and sufficient for the capture and assembly of MIIA minifilaments in FA. S1916 phosphorylation was also sufficient to promote the rapid assembly of FAs to enhance cell migration and for the modulation of traction force, spreading, and migration by ECM stiffness.ConclusionsOur study reveals for the first time that Rac1 and integrin activation regulates MIIA HC phosphorylation through a PKC-dependent mechanism that promotes MIIA association with FAs and acts as a critical modulator of cell migration and mechanosensing
Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. The definitive version was published in Journal of Cell Biology 188 (2010): 877-890, doi:10.1083/jcb.200906012.Focal adhesions (FAs) are mechanosensitive adhesion and signaling complexes that grow and change composition in response to myosin II–mediated cytoskeletal tension in a process known as FA maturation. To understand tension-mediated FA maturation, we sought to identify proteins that are recruited to FAs in a myosin II–dependent manner and to examine the mechanism for their myosin II–sensitive FA association. We find that FA recruitment of both the cytoskeletal adapter protein vinculin and the tyrosine kinase FA kinase (FAK) are myosin II and extracellular matrix (ECM) stiffness dependent. Myosin II activity promotes FAK/Src-mediated phosphorylation of paxillin on tyrosines 31 and 118 and vinculin association with paxillin. We show that phosphomimic mutations of paxillin can specifically induce the recruitment of vinculin to adhesions independent of myosin II activity. These results reveal an important role for paxillin in adhesion mechanosensing via myosin II–mediated FAK phosphorylation of paxillin that promotes vinculin FA recruitment to reinforce the cytoskeletal ECM linkage and drive FA maturation.This work was supported by NHLBI (C.M. Waterman and A.M.
Pasapera; and grant HL093156 to D.D. Schlaepfer) and the Burroughs
Wellcome Fund (E. Rericha)