43 research outputs found

    Pharmacokinetic Appraisal of Carprofen Delivery from Intra-Articular Nanoparticles: A Population Modeling Approach in Rabbits

    Get PDF
    Osteoarthritis is frequently treated in veterinary settings with non-steroidal anti-inflammatory drugs (NSAID) such as carprofen (CP). Its action over the articular cartilage can be enhanced by increasing drug uptake into the cartilage, alongside its site of action, and anticipating its rapid distribution towards the bloodstream. A pharmacokinetic study to evaluate carprofen nanoparticles (NP) after intraarticular administration (IA) in rabbits was performed through a modeling allometric approach. The pharmacokinetic analysis of plasma profiles showed a rapid CP distribution outwards the synovial chamber but mainly remaining in plasma (Vc = 0.14 L/5 Kg), according to its high protein-binding. The absorption data modeling showed the occurrence of two different release–absorption rate processes after nanoparticle administration in the synovial space, i.e., a fast rate process causing a burst effect and involving the 59.5% of the total CP absorbed amount and a slow rate process, involving 40.5%. Interestingly, the CP burst effect inside the joint space enhances its diffusion towards cartilage resulting in CP accumulation in about three times higher concentrations than in plasma. In line with these results, the normalized-by-dose area under the concentration vs. time curve (AUC) values after IA were 80% lower than those observed after the intravenous. Moreover, the slower slope of the concentration–time terminal phase after IA administration vs. intravenous (IV) suggested a flip-flop phenomenon (0.35 h-1 vs. 0.19 h-1). Notably, CP clearances are predictive of the pharmacokinetic (PK) profile of CP in healthy humans (0.14 L/h/5 kg vs. 2.92 L/h/70 kg) although an over-estimation has been detected for cats or dogs (10 times and 4 times, respectively). This fact could probably be attributed to inter-species metabolic differences. In summary, despite the limited number of animals used, this study shows that the rabbit model could be suitable for a predictive evaluation of the release enhancement of CP-NP towards the biophase in arthritic diseases not due to sterical retention of the formulation

    Carprofen Permeation Test through Porcine Ex VivoMucous Membranes and Ophthalmic Tissues forTolerability Assessments: Validation andHistological Study

    Get PDF
    Carprofen (CP), a non-steroidal anti-inflammatory drug (NSAID), is profusely used in veterinary medicine for its analgesic and anti-inflammatory activity. Some undesirable effects are associated with its systemic administration. Alternative local routes are especially useful to facilitate its administration in animals. The main aim of this paper is to validate the suitability of ex vivo permeation experiments of CP with porcine mucous membranes (buccal, sublingual and vaginal) and ophthalmic tissues (cornea, sclera and conjunctiva) intended to be representative of naïve in vivo conditions. Chromatographic analysis of CP in membrane-permeated samples and drug-retained have been validated following standard bioanalytical guidelines. Then, recovery levels of drugs in tissue samples were assessed with aqueous phosphate buffered saline (PBS) buffer to preserve the histological integrity. Finally, as a proof of concept, a series of CP permeation tests in vertical Franz diffusion cells has been performed to evaluate permeation flux and permeability constants in all tissues, followed by a histological study for critical evaluation. Furthermore, synthetic tissue retention-like samples were prepared to verify the value of this experimental study. Results show linear relationships with good determination coefficient (R2 > 0.998 and R2 > 0.999) in the range of 0.78 to 6.25 mg/mL and 3.125 mg/mL to 100 mg/mL, respectively. Low limits of quantification around 0.40 µg/mL were allowed to follow permeation levels until a minimum of 0.40% of the locally-applied dose. This method showed a good accuracy and precision with values lower than 2%. After the recovery technique, reproducible values below 30% were achieved in all tissues, suggesting it is a non-damaging method with low efficiency that requires the use of further solvents to enhance the extraction percentages. After permeation and histology tests, no relevant peak interferences were detected, and no cell or tissue damage was found in any tissue. In conclusion, results demonstrate the suitability of this test to quantify the distribution of CP with good histological tolerability

    Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia

    Get PDF
    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1 × 106 cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. © 2013 Elsevier B.V. All rights reserved.This study was supported by Grants RD08/0010/2005 (Red TERCEL) and PI10/00964 from Institute of Heath Carlos III and TRA-120 (Ministry of Health) to BS.Peer Reviewe

    Nanostructured supramolecular hydrogels: Towards the topical treatment of Psoriasis and other skin diseases

    Get PDF
    Supramolecular hydrogels were synthesized using a bis-imidazolium based amphiphile, and incorporating chemically diverse drugs, such as the cytostatics gemcitabine hydrochloride and methotrexate sodium salt, the immunosuppressive drug tacrolimus, as well as the corticoid drugs betamethasone 17-valerate and triamcinolone acetonide, and their potential as drug delivery agents in the dermal treatment of Psoriasis was evaluated. The rheological behavior of gels was studied, showing in all cases suitable viscoelastic properties for topical drug delivery. Scanning electron microscopy (SEM) shows that the drugs included have a great influence on the gel morphology at the microscopic level, as the incorporation of gemcitabine hydrochloride leads to slightly thicker fibers, the incorporation of tacrolimus induces flocculation and spherical precipitates, and the incorporation of methotrexate forms curled fibers. 1H NMR spectroscopy experiments show that these drugs not only remain dissolved at the interstitial space, but up to 72% of either gemcitabine or methotrexate, and up to 38% of tacrolimus, is retained within the gel fibers in gels formed with a 1:1 gelator:drug molar ratio. This unique fiber incorporation not only protects the drug from degradation, but also importantly induces a Two Phase Exponential drug release, where the first phase corresponds to the drug dissolved in the interstitial space, while the second phase corresponds to the drug exiting from the gel fibers, and where the speed in each phase is in accordance with the physicochemical properties of the drugs, opening perspectives for controlled delivery. Skin permeation ex vivo tests show how these gels successfully promote the drug permeation and retention inside the skin for reaching their therapeutic target, while in vivo experiments demonstrate that they decrease the hyperplasia and reduce the macroscopic tissue damage typically observed in psoriatic skin, significantly more than the drugs in solution. All these characteristics, beside the spontaneous and easy preparation (room temperature and soft stirring), make these gels a good alternative to other routes of administration for Psoriasis treatment, increasing the drug concentration at the target tissue, and minimizing side effects

    Microscale coiling in bis-imidazolium supramolecular hydrogel fibres induced by release of a cationic serine protease inhibitor

    Get PDF
    Gels formed by a gemini dicationic amphiphile incorporate a serine protease inhibitor, which could be used in a new approach to the treatment of Rosacea, within the fibres as well as in the space between them, affecting a number of gel properties but most importantly inducing remarkable fibre coiling at the microscopic level as a result of drug release from the gel. Drug release and skin permeation experiments show its potential for topical administration

    Validation of an Ex Vivo Permeation Method for the Intestinal Permeability of Different BCS Drugs and Its Correlation with Caco-2 In Vitro Experiments

    Get PDF
    The absorption study of drugs through different biological membranes constitutes an essential step in the development of new pharmaceutical dosage forms. Concerning orally administered forms, methods based on monolayer cell culture of Caco-2 (Caucasian colon adenocarcinoma) have been developed to emulate intestinal mucosa in permeability studies. Although it is widely accepted, it has disadvantages, such as high costs or high technical complexity, and limitations related to the simplified structure of the monolayer or the class of molecules that can be permeated according to the transport mechanisms. The aim of this work was to develop a new ex vivo methodology which allows the evaluation of the intestinal apparent permeability coefficient (Papp) while using fewer resources and to assess the correlation with Caco-2. To this end, pig (Sus scrofa) duodenum segments were mounted in Franz diffusion cells and used to permeate four different drugs: ketorolac tromethamine (Kt), melatonin (Mel), hydrochlorothiazide (Htz), and furosemide (Fur). No statistically significant differences (p > 0.05) were observed corelating Papp values from Franz diffusion cells and Caco-2 cell experiments for Kt, Htz, and Fur. However, there were statistically significant differences (p < 0.05) correlating Papp values and Mel. The difference is explained by the role of Mel in the duodenal epithelial paracellular permeability reduction. Ex vivo permeation may be an equivalent method to Caco-2 for drugs that do not produce intestinal membrane phenomena that could affect absorption

    EIFIS: a modular extreme integral field spectrograph for the 10.4m GTC

    Full text link
    EIFIS (Extreme Integral FIeld Spectrograph) is a modular integral field spectrograph, based on image slicers, and makes use of new, large format detectors. The concept is thought to cover the largest possible field of view while producing spectroscopy over the complete optical range (3 000 - 10 000 \r{A}) at a medium resolving power of about 2400. In the optimal concept, each module covers a field of view of 38" x 38" with 0.3" spaxels, which is fed into a double spectrograph with common collimator optics. The blue arm covers the spectral range between 3000 and 5600 \r{A} and the red arm between 5400 and 10100 \r{A}, allowing for an overlap range. The spectra are imaged onto 9.2k x 9.2k detectors using a double pseudoslit. The proposed design for the 10.4m Gran Telescopio Canarias uses a total of 6 such modules to cover a total of 2.43 square arcminutes. Here we will present the conceptual design of the instrument and a feasibility study of the optical and mechanical design of the spectrographs. We discuss the limitations and alternative designs and its potential to produce leading edge science in the era of extremely large telescopes and the James Webb Space Telescope.Comment: Submitted to the Proceedings of the SPIE, Astronomical Telescopes and Instrumentatio

    The influence of polysaccharide coating on the physicochemical parameters and cytotoxicity of silica nanoparticles for hydrophilic biomolecules delivery

    Get PDF
    The present work reports the effect of polysaccharides (chitosan and sodium alginate) on silica nanoparticles (SiNP) for hydrophilic molecules delivery taking insulin as model drug. The influence of tetraethyl orthosilicate (TEOS) and homogenization speed on SiNP properties was assessed by a 22 factorial design achieving as optimal parameters: 0.43 mol/L of TEOS and homogenization speed of 5000 rpm. SiNP mean particle size (Z-Ave) was of 256.6 nm and polydispersity index (PI) of 0.218. SiNP coated with chitosan (SiNP-CH) or sodium alginate (SiNP-SA) increased insulin association efficacy; reaching 84.6% (SiNP-SA) and 90.8% (SiNP-CH). However, coated SiNP released 50%–60% of the peptide during the first 45 min at acidic environment, while uncoated SiNP only released 30%. Similar results were obtained at pH 6.8. The low Akaike’s (AIC) values indicated that drug release followed Peppas model for SiNP-SA and second order for uncoated SiNP and SiNP-CH (pH 2.0). At pH 6.8, the best fitting was Boltzmann for Ins-SiNP. However, SiNP-CH and SiNP-SA showed a first-order behavior. Cytotoxicity of nanoparticles, assessed in Caco-2 and HepG2 cells, showed that 100 to 500 µg/mL SiNP-CH and SiNP-SA slightly decreased cell viability, comparing with SiNP. In conclusion, coating SiNP with selected polysaccharides influenced the nanoparticles physicochemical properties, the insulin release, and the effect of these nanoparticles on cell viability.This research was supported by the Fundação para a Ciência e Tecnologia (FCT, Portugal), by grating PhD scholarships SFRH/BD/60640/2009 (T. Andreani), SFRH/BD/80335/2011 (J.F. Fangueiro) and SFRH/BD/111274/2015 (P.M.V. Fernandes), and funded projects UID/AGR/04033/2019 (CITAB), and M-ERANET/0004/2015-PAIRED (Partnership Agreement PT2020).info:eu-repo/semantics/publishedVersio

    Multifunctional serine protease inhibitor-coated water-soluble gold nanoparticles as a novel targeted approach for the treatment of inflammatory skin diseases

    Get PDF
    The overexpression and increased activity of the serine protease Kallikrein 5 (KLK5) is characteristic of inflammatory skin diseases such as Rosacea. The use of inhibitors of this enzyme—such as 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF·HCl) or the anti-human recombinant Kallikrein 5 (anti-KLK5) antibody—in the treatment of the disease has been limited due to their low bioavailability, for which their immobilization in drug delivery agents can contribute to making serine protease inhibitors clinically useful. In this work, we synthesized gold nanoparticles (GNP) coated with a mixture of hydroxyl- and carboxyl-terminated thiolates (GNP.OH/COOH), whose carboxyl groups were used to further functionalize the nanoparticles with the serine protease inhibitor AEBSF·HCl either electrostatically or covalently (GNP.COOH AEBSF and GNP.AEBSF, respectively), or with the anti-KLK5 antibody (GNP.antiKLK5). The synthesized and functionalized GNP were highly water-soluble, and they were extensively characterized using UV–vis absorption spectroscopy, Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Thermogravimetric Analysis (TGA). GNP.OH/COOH and their subsequent functionalizations effectively inhibited KLK5 in vitro. Internalization of fluorophore-coated GNP.OH/COOH in human keratinocytes (HaCaT cells) was proven using confocal fluorescence microscopy. Cell viability assays revealed that the cytotoxicity of free AEBSF is importantly decreased when it is incorporated in the nanoparticles, either ionically (GNP.COOH AEBSF) or, most importantly, covalently (GNP.AEBSF). The functionalized nanoparticles GNP.AEBSF and GNP.antiKLK5 inhibited intracellular KLK5 activity in HaCaT cells and diminished secretion of IL-8 under inflammatory conditions triggered by TLR-2 ligands. This study points to the great potential of these GNP as a new intracellular delivery strategy for both small drugs and antibodies in the treatment of skin diseases such as Rosacea

    Supramolecular Hydrogels Consisting of Nanofibers Increase the Bioavailability of Curcuminoids in Inflammatory Skin Diseases

    Get PDF
    The low bioavailability of curcuminoids (CCMoids) limits their use in the treatment of inflammatory skin diseases. Our work shows that this constraint can be overcome upon their incorporation into supramolecular hydrogels assembled from a gemini-imidazolium amphiphilic gelator. Three structural CCMoid analogues were used to prepare supramolecular hydrogels, and it was observed that the concentration of both the gelator and CCMoid and the proportion of solvents influence the self-assembly process. Moreover, the mechanical properties of the nanostructured gels were studied to find the optimum gels, which were then further characterized microscopically, and their ability to release the CCMoid was evaluated. The physicochemical properties of the CCMoids play a fundamental role in the interaction with the gelator, influencing not only the gelation but also the morphology at the microscopic level, the mechanical properties, and the biopharmaceutical behavior such as the amount of CCMoid released from the gels. The nanostructured supramolecular hydrogels, which contain the CCMoids at much lower concentrations (μg/mL) in comparison to other products, promote the penetration of the CCMoids within the skin, but not their transdermal permeation, thus preventing any possible systemic effects and representing a safer option for topical administration. As a result, the CCMoid-containing hydrogels can effectively reduce skin inflammation in vivo, proving that these supramolecular systems are excellent alternatives in the treatment of inflammatory skin diseases.This work was supported by the projects PID2020-115663GB-C3-2, PID2019-108794GB-I00, and PID2020–115631GB-I00 funded by MCIN/AEI/10.13039/501100011033 from the Ministerio de Ciencia e Innovación. We thank AGAUR for a grant to consolidated research groups 2017SGR1277. A.G.-C. and N.A.-A. acknowledge the financial support from the Spanish Ministry Science, through the “Severo Ochoa” Programme for Centres of Excellence (FUNFUTURE) (2020-2023). A.G.-C. also acknowledges a Ramon y Cajal Grant (RYC-2017-22910).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore