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ABSTRACT 

Gels formed by a gemini dicationic amphiphile incorporate a serine protease inhibitor, which 

could be used in a new approach to the treatment of Rosacea, within the fibres as well as in 

the space between them, affecting a number of gel properties but most importantly inducing 

remarkable fibre coiling at the microscopic level as a result of drug release from the gel. Drug 

release and skin permeation experiments show its potential for topical administration. 

INTRODUCTION 

Low molecular weight gelators (LMWGs) self-assemble to form fibres through non-covalent 

forces.1 These supramolecular gels are soft and sometimes thermoreversible, making them 

suitable for therapeutic applications.2 Their three-dimensional morphology depends on the 

nature of the gelator, the self-assembly conditions, and non-covalent interactions established 

with host molecules incorporated into the gel matrix, like, ion-dipole interactions in metal and 

anion-binding gels.3 Also, gel skeletal modification can be made introducing metal ions.4 
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However, to the best of our knowledge, no examples are known of changes in the morphology 

of the gel fibres caused by the release of a previously incorporated host. 

 Our group has shown that gemini imidazolium salts can deliver anionic drugs,5 

including from hydrogels that are useful for topical applications.6 The self-assembly of the 

cationic gelators and the interaction with anionic guests in the supramolecular gels is driven 

not only by ionic interactions but also hydrogen bonds and hydrophobic forces.6 Here, we 

show that the incorporated drug can also be cationic, that this feature makes drug release 

more effective, leading to a change in the morphology of the cationic gels through coiling of 

the gel fibres. 

RESULTS AND DISCUSSION 

We chose the drug 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF·HCl), as 

an irreversible serine protease inhibitor whose activity has shown to be successful, inhibiting 

Kallikrein-5 (K5),7 a protein that is overexpressed in ailments such as Rosacea.8 Its clinical use 

would imply a new therapeutic strategy that has not been reported, the main drawback being 

low drugability. A delivery material could overcome this obstacle and make a novel approach 

in the topical treatment of Rosacea. Furthermore, topical administration helps increase the 

drug concentration at the target site, lowering the side effects in other tissues. 

 For all these reasons, the ability of bis-imidazolium 1·2Br to form gels in presence of 

AEBSF·HCl (Fig. 1) using water and ethanol as solvents was explored and the gelling conditions 

were optimized. The structure and behaviour of the gels were characterized, and drug release 

and skin permeation experiments were performed in order to assess their suitability as a 

possible new topical treatment for Rosacea. 

 The optimum gelling conditions of compound 1·2Br are a final concentration of 5 

mg/mL in 50:50 ethanol:water, and at room temperature, giving a fast gel formation (ca. 10 

min.). The influence of AEBSF·HCl concentration was assessed using these optimized 

conditions. Gels 1·AEBSF are also formed in 10 minutes in the presence of low concentrations 

of drug, but the gelling time increased significantly at higher concentrations (above 4 mg/mL, 

See SI Fig. S1). A final concentration of 5 mg/mL AEBSF·HCl was chosen as optimum for being 

the highest one that permits gelation in 20 minutes or less. This proportion is an approximate 

1:4 gelator:drug molar ratio, a much higher loading than that possible using the same gelator 

and anionic drugs.6 

 Rheological studies of gels 1·2Br and 1·AEBSF show their resistance to rupture by the 

critical stress value: the addition of AEBSF·HCl makes the gel three times more elastic as 

compared to the gel alone (SI Table S1 and Fig. S2), as opposed to the observations with other 

drugs.6b However, when the critical stress is reached, gels show an abrupt rupture rather than 

a slow one, making it suitable for a topical pharmaceutical form. Frequency sweep tests 

showed the gel resistance to deformation at different frequencies, shown by the Storage (G’) 

and Loss (G’’) moduli, at a constant shear stress of  = 0.5 Pa for being within the viscoelastic 

region. In both the gel 1·AEBSF and the gel 1·2Br, independently of the frequency applied, an 

elastic plateau was observed, where the Storage modulus is higher than the Loss modulus (G’ > 
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G’’), meaning that gels present a predominant elastic, solid-like behaviour, for which they can 

be classified as “solid-like” gels.1a,9  The addition of AEBSF·HCl decreases the gel resistance to 

deformation, making it softer than gel 1·2Br which is also useful for topical application (SI Fig. 

S2). 

 1H NMR spectroscopy experiments show (SI Fig. S3) that at a 1:1 molar ratio of 1·2Br 

and AEBSF·HCl (5:1 mg/mL) the totality of 1·2Br assembles forming the gel 1·AEBSF, leaving no 

remaining compound in solution, as no peaks from compound 1·2Br can be observed. Ca. 76% 

of the AEBSF·HCl present in the mixture is incorporated in the gel fibres, the remainder left in 

the interstitial space.  The versatility of the gelator 1·2Br to incorporate both anionic and 

cationic drugs confirms its promise for drug delivery. 

 Xerogel 1·2Br has fibres longer than 20 μm and around 100 nm width, that stick 

together forming ribbons and do not show signs of ageing (Fig. 2a and Fig. S4a in SI). 

Contrastingly, the morphology of the gels 1·AEBSF changes with time, a phenomenon which is 

also dependent on the concentration of AEBSF·HCl used (ranging from 1-5 mg/mL). AEBSF 

precipitates might be expected after complete evaporation of the solvent in the gel, because 

even at 1 mg/mL 24% of the material is in the interstitial space (as shown by NMR); pure 

AEBSF·HCl precipitates in rod-shaped crystals (Fig. 2b). In all gels with 1·AEBSF, no clear drug 

precipitates were found on freshly prepared gels, when gelation takes place in the presence of 

either 1, 3 or 5 mg/mL of AEBSF·HCl, as shown by SEM images (Fig. 2c and SI Fig. S5). It is 

interesting that fibres in 1·AEBSF are densely twisted much more than pure gel 1·2Br, which 

could be the reason of their subsequent coiling in order to reduce the tension created. 

  When gels 1·AEBSF are left for two weeks in a sealed vial the morphology of 

the xerogels exhibits changes depending of the amount of AEBSF·HCl present in the gelation 

process.  Thus, when 1mg/mL of AEBSF·HCl was used, the fibres in 1·AEBSF retain the same 

morphology as when freshly prepared, as seen in Fig. 2d (see also SI Fig. S5a). In contrast, in 

the two-week old gels formed at a concentration above 3 mg/mL of AEBSF·HCl, the bending of 

the fibres in a circular way, resembling “coiled ropes” can be observed (Fig. 2d, SI Fig. S4b, Fig. 

S5a). These rolls range from 5 to 15 μm in diameter, and the thickness of the ring varies widely 

due to the number of times the “rope” is coiled. As can be seen, the concentration of 

AEBSF·HCl influences the structure of fibres in two-week old gels 1·AEBSF. Coils were formed 

both at 3 and 5 mg/mL gels, the coils being thinner at 3 mg/mL, as fibres are coiled less times. 

Also, at this concentration some long straight fibres are still starting to bend, suggesting the 

subsequent coil formation. 

 Just a few examples of differences in morphology of nanostructured materials have 

been reported before,10 but mainly as the consequence of induced self-assembly after 

evaporation, and very rarely as a result of doping gels with metal ions.4 The coiling observed 

on the fibres of 1·AEBSF appears as an unprecedented example of ordering rearrangement 

induced by intermolecular interactions. Thus, the cationic drug AEBSF·HCl seems to be 

kinetically entrapped within the gel nanostructure, due to the fast self-assembly in the gelation 

process, generating a metastable state where the drug is incorporated in the lamellar gel. 
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However, its presence disturbs the interlayer packing of the gelator 1·2Br that can experiment 

alterations upon changes in external experimental conditions. 

 The chemical composition of the fibres was measured by Energy Dispersive X-ray 

spectroscopy (EDX) on different areas of two-week old 1·AEBSF xerogels assembled in the 

presence of 3 mg/mL (SI Fig. S6) or 5 mg/mL (Fig. 3) of AEBSF·HCl. The spectra show the 

presence of sulphur in the straight fibres in gels for both concentrations, confirming the 

presence of the drug after two weeks. However, in the coiled fibres the absence or diminution 

of both the sulphur and fluorine peaks suggests that there is release of drug from the fibres 

over time, presumably into the interstitial liquid. The release could trigger the disruption in the 

interlayer packing within the fibres, prompting their coiling. 

 Differential Scanning Calorimetry (DSC) showed that the time needed for gel formation 

of 1·AEBSF and the thermodyna mic parameters associated with the phase transition are very 

different to gel 1·2Br.  The addition of AEBSF·HCl to gelator 1·2Br influences greatly the gelling 

temperature (Fig. S7 in SI), time of gelation, and associated enthalpy change. Gel 1·2Br 

spontaneously starts forming at around 21 °C, while gel 1·AEBSF starts forming at ca. 30 °C. 

This shows that adding the drug makes the gel more stable at higher temperatures. 

Conversely, the whole width of the peak indicates the total time for gel formation, which 

increases considerably from around 5 min to 20 min by adding AEBSF·HCl, similar to the 

observations with the naked eye, and suggesting that the interaction between the drug and 

the gelator lengthens the gelling period, presumably because of slower gel fibre assembly. The 

heat capacity (Cp) in the plot also represents the speed of gelation, where the onset 

temperature is the point at which gelation starts, and the maximum value is when the gelation 

occurs fastest. For instance, the gelation of 1·AEBSF is 20 times slower than that of gel 1·2Br, 

which is in accordance to the increase in the gelling period. 

 The most noticeable change observed is in the thermodynamic parameters of the 

process. The gelation of 1·2Br is exothermic, and is related to the decrease of entropy upon 

the formation of fibres. Very differently, the gelling of 1·AEBSF shows both an exothermic 

event in the beginning, and an endothermic one at lower temperatures, giving an overall 

enthalpy close to zero. These results indicate that upon the mixture of 1·2Br with AEBSF·HCl 

and the solvents, not only the gelation occurs, but at least a second process is happening at 

the same time, which is endothermic, and therefore, necessarily entropic. This event could be 

an adsorption of the drug in the interstitial space of the gel to the fibres, and might be related 

to an increase in the surface tension of the solvent. The thermoreversibility of 1·AEBSF was 

proven by subsequent heating-cooling cycles, in order to melt the gel and form it again, and 

similar peaks were observed. However, a slight decrease in Cp values, and a slight increase in 

the gelling temperature, occur in each cycle, which suggests that heating up the sample to 35 

°C melts the gel but still leaves some gel nucleation points intact, not seen macroscopically, 

which facilitate the subsequent gelation on cooling (SI, Table S2 and Fig. S8). 

 Drug release experiments from the nanocomposite material using PBS as the receptor 

medium for complying SINK conditions,11 to prove of the drug when applied on human skin is 

not limited, showed that gel 1·AEBSF releases almost 92% of the drug during the first 15 hours 
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(fitting a one phase exponential association model). Afterwards, drug degradation occurs in 

the receptor chamber,12 following a one phase exponential decay model (Fig. 4 and Table S3). 

This degradation would not compromise the therapeutical efficacy of the gel when applied on 

the skin, as the speed of release is ten times higher than the speed of degradation, whose half-

life (55 h) is much longer than the usual administration intervals of topical formulations. 

Moreover, at the normal pH of the skin (5.5), degradation would barely occur. Permeation 

studies on human skin show that 1·AEBSF promotes the complete permeation of AEBSF 

through the skin in 6 hours (lag-time, see Fig. 5 and SI Table S4).  As K5 is located mainly at the 

epidermis, specifically at the cornified and granular layers,13,14 the amount of drug retained 

inside the skin becomes an even more important parameter to be considered. The total 

amount of AEBSF retained (As corr.) is estimated by considering both the amount of drug 

extracted from the skin after the experiment [As] and the percentage of drug that can actually 

be extracted out of the total drug retained (recovery experiments). After topical application, 

around 3484 µg/g·cm2, is retained in the skin, where it has its therapeutic activity, equivalent 

to 69% of the total dose applied (Fig. 5). 

 Changes in the morphology of the gels were scrutinized by SEM after being subjected 

to release conditions, for a maximum of 16 h, the maximum period permitting almost a total 

release with no detectable hydrolysis of the drug. In all the samples, some lumpy material 

arises from the buffer used under those conditions. No variation was observed for the pure gel 

1·2Br, for which only straight fibres were seen (Fig. S9 in SI). The release of the drug from 

1·AEBSF under these release conditions for  6 and 16 hours is also accompanied by the 

formation of fibre coils (see SEM images in SI Fig S9 and S10). The images clearly show the 

formation of coils and a more structured and curved nature to the fibres of the gelator. Direct 

quantification is not possible, but the number of coiled fibres seems similar to those on aged 

gels under storage conditions over a longer period of time. While the morphological change is 

clear, powder X-ray diffraction of gels before and after release shows no significant structural 

rearrangement (Fig. S11 in SI). A model such that in Fig. S12 might explain this observation. 

 In summary, AEBSF·HCl strongly influences the self-assembly of 1·2Br and the 

behaviour of the resulting gel, which is soft and thus suitable for dermal application. AEBSF is 

released from the gel, triggering its morphological change evidenced by the twisting of fibres 

and the subsequent formation of coils, although not all fibres are able to coil, presumably 

because their length and being trapped physically by other fibres. Almost all the drug 

incorporated in 1·AEBSF is released and penetrates human skin, where it is retained. By the 

nature of the drug incorporated, this gel would imply a novel therapeutic approach in the 

topical treatment of ailments like Rosacea. 
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Fig. 1 Chemical structures of the gelator 1·2Br and the serine protease inhibitor AEBSF·HCl. 

 

 



8 

 

Gel 1·AEBSF    Two-week old
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Gel 1·2Br    Two-week olda
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AEBSF·HCl alone

5 mg/mL 5 mg/mLb

 

Fig. 2 SEM images showing the influence of drug concentration and age of the gel on the 

morphology of gel fibres. a) Gel 1·2Br. b) Precipitates of AEBSF·HCl, from a 5 mg/mL solution. 

c) Freshly prepared 1·AEBSF gel. d) Influence of the drug concentration in a two-week old gel. 

Yellow scale bar represents 8 μm in all images. 
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Fig. 3 EDX spectra from straight fibre and coiled fibre of 5 mg/mL 1·AEBSF gel. 

 

 

 

Fig. 4. Cumulative amount of drug released of from gel 1·AEBSF and degradation in receptor 

medium. Values are means and error bars represent one standard deviation (n=3). Release and 

decay both follow one phase exponentials (see ESI and equation parameters in Table S3). 
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Fig. 5. Cumulative amount of AEBSF permeated (left) and retained in human skin (right) after 

application of gel 1·AEBSF. Values in permeation experiments represent the Means ± one 

standard deviation. The bar in retention experiments represents the Median value (n=5). 
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EXPERIMENTAL SECTION 

Materials 

All reagents were of analytical grade. 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 

(AEBSF·HCl) was purchased from Fisher Scientific. Phosphate buffered saline and Ethanol HPLC 

grade were purchased from Sigma-Aldrich. Water was obtained from a MilliQ equipment from 

Millipore®. 

Synthesis  

Compound 1,3-bis[(3-octadecyl-1-imidazolio)methyl]benzene dibromide (1·2Br) was prepared 

as reported previously.[1] 

Methods 

Gel preparation 

Gels were always prepared by dissolving compound 1·2Br in ethanol, adding distilled water as 

the anti-solvent, mixing gently and storing without disturbance in closed vials to prevent 

solvent evaporation.  

Influence of drug concentration on gel formation 

Solubility of AEBSF·HCl was previously assessed in water in order to determine the drug 

concentrations in gel to be assayed. For the gels with 1·2Br and AEBSF·HCl 10 mg of the 

gelator was dissolved in 1 mL of ethanol. 1 mL of an aqueous solution containing different 

amounts of drug (1, 2.5, 3.5, 5, 10, 20 and 40 mg) was added and the solution was gently 

stirred and left to stand at room temperature as described above. 

Optimum conditions for gel fabrication 

Optimum conditions were chosen for the preparation of gels, which were used in the rest of 

the experiments either with or without drug, unless stated otherwise. For instance, the final 

volume was 2 mL, with a final concentration of 1·2Br of 5 mg/mL as the gelator molecule, using 

a proportion of 50% ethanol and 50% water, and both mixing and storing at room 

temperature. Concentration of AEBSF·HCl was 5 mg/mL unless differently stated for being the 

highest that presents no problems for gelling, except for SEM images in which three different 

concentrations were used, and drug incorporation studies (NMR), in which the molar ratio 

gelator:drug was 1:1. Gelator 1·2Br was dissolved in ethanol and was mixed with the drug 

solution in water. Samples were mixed gently, closed for preventing solvent evaporation, and 

left to stand without disturbance. 

Gel characterization 

Rheology Experiments 
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Rheological studies of gels 1·2Br and 1·AEBSF were performed in order to know their 

viscoelastic behaviour. Amplitude sweep tests show their resistance to rupture by the critical 

stress value. 

For rheological studies, gels were formed in 7 cm diameter glass Petri dishes, forming a total 

volume of 27 mL. Prepared gels were always kept at room temperature overnight before 

study. 

The rheological characterization was performed using a Haake Rheostress1 rheometer 

(Thermo Fisher Scientific, Karlsruhe, Germany) connected to a temperature control Thermo 

Haake Phoenix II + Haake C25P and equipped with parallel plate geometry (Haake PP60 Ti, 60 

mm diameter, 3 mm gap between plates).  

Oscillation amplitude tests: The amplitude in shear stress  was increased for 0.01 to 100 Pa 

with constant frequency of 1 Hz for evaluating the gel strength. Oscillation frequency tests 

were carried out from 0.01 to 10 Hz at a constant shear stress within the linear viscoelastic 

region, in order to determine the related variation of storage modulus (G’) and loss modulus 

(G”) at 32ºC. Both viscoelastic moduli are defined as follows: G’=0/0 cos  and G’’= 0/0 sin  

(where 0 and 0 are the amplitudes of stress and strain, and  is the phase shift between 

them). 

The software Haake RheoWin®Job Manager V.3.3 and RheoWin®Data Manager V.3.3 (Thermo 

Electron Corporation, Karlsruhe, Germany) were used to carry out the test and analysis of the 

obtained data, respectively. 

Drug incorporation into gel fibres 

Incorporation of drug into the gel 1·2Br  was quantified by 1H NMR spectroscopy using a Varian 

400 MHz NMR spectrometer from the Centres Científics I Tecnològics de la Universitat de 

Barcelona (CCiT-UB). 32 scans were recorded in every measurement.  

For quantifying the incorporation of drug inside the gel fibres, gels from 1·2Br incorporating 

drug at a molar ration of 1:1 were formed inside the NMR tube, and the drug signals in spectra 

were compared to those from a drug solution at the same concentration. Peaks of the 

aromatic moeity from the drug were taken as the reference signal. For instance, two aliquots 

containing (8.28 μmol) of AEBSF·HCl each were dissolved in 0.75 mL of deuterium oxide and 1H 

NMR spectra of both (Tubes A and B) were recorded (Record 1). After that, 0.75 mL of 

deuterated methanol was added to tube A and 7.5 mg (8.28 μmol) of 1·2Br dissolved in 0.75 

mL of deuterated methanol was added to tube B. Both tubes were shaken to promote mixing 

and the gel formation in tube B was observed, while tube A remained in solution. 1H NMR 

spectra of both tubes were recorded in the same conditions (Record 2).  

Microscopy: SEM/EDX 

In all cases, xerogel samples were prepared by completely evaporating the solvent from freshly 

and two-week old gels. 
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Scanning Electron Microscopy (SEM) images and EDX analyses were acquired by the Electron 

Microscopy Service in the Institut de Ciència de Materials de Barcelona – Consejo Superior de 

Investigaciones Científicas (ICMAB-CSIC) on a QUANTA FEI 200 FEG-ESEM system on samples 

deposited on carbon tape, dried with N2 .and coated with a layer of gold. 

Calorimetric studies 

We have used this technique to evaluate the influence that the incorporation of AEBSF·HCl in 

gel 1·AEBSF has on the temperature and time of gelation, as well as on the changes in 

thermodynamic parameters such as enthalpy and entropy, as compared to gel 1·2Br. The 

strategy consists on introducing the freshly prepared mixture of the gelator, the solvents, and 

AEBSF·HCl if it is the case, into the equipment above the gel’s melting temperature. After that, 

temperature is slowly decreased in order to form the gel inside the equipment, while 

continuously tracking heat changes. Note that thermograms are plotted in an increasing 

temperature scale, but experiments are performed by decreasing the temperature, for which 

plots should be read from right to left. 

A Microcal VP-DSC from Mettler-Toledo was used for performing the gelation of compound 

1·2Br. 0.5 mL of a mixture of compound 1·2Br with both ethanol and water was introduced in 

the equipment at 35 °C. The sample was then cooled down slowly at 1 °C/min, from 35 °C to 5 

°C, in order to form a gel inside the equipment, while monitoring the specific heat capacity (Cp) 

during the cooling of the sample. 

Release studies 

Drug release experiments were performed to prove that gel 1·AEBSF can release AEBSF·HCl 

from the nanocomposite material, and to demonstrate that such profile will not limit the 

permeation of the drug when applied on human skin. Conditions such as the Franz cells used 

and the temperature bath at 32 ºC were adjusted to be similar than those in the skin 

permeation experiments. PBS was chosen as the receptor medium for complying SINK 

conditions. 

Drug release studies from the gels were performed in a Microette transdermal diffusion 

system (Microette plus-Hanson Research) following previously reported methodologies.[2,3]  

Vertically assembled Franz-type diffusion cells (Crown Glass) (2.54 cm2 diffusion area) were 

used. Dialysis membranes (Cellu·Sep T3 dialysis membrane, MWCO 12000 – 14000 Da, MFPI, 

USA), previously hydrated in ethanol:water 7:3, were placed in the Franz-type diffusion cells. 

Receptor chamber contained 10 mM PBS pH 7.4 for the study of gels with AEBSF·HCl, 

complying with SINK conditions.[4] The dialysis membrane and the donor container were put 

onto the glass receptor chamber and the assembly was fixed with a joint.  The Franz-type cells 

were connected to a controlled temperature circulating bath set to 32°C. Gels of 1·2Br were 

prepared at a drug concentration of 5 mg/mL. Known weights of gel were placed into the 

donor compartment onto the dialysis membranes and the donor compartment was sealed 

with plastic paraffin film to prevent solvent evaporation. Samples were taken at given time 

intervals, and every sample taken was replaced by equal volume of the receptor solution. 

Release experiments of gels were done in triplicate. Concentrations of samples were 
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determined by HPLC and cumulative amounts of released drug as a function of time were 

plotted. Kinetic parameters were calculated from the Mean values of three replicas, 

performing a nonlinear least-squares regression using GraphPad Prism® (version 3.00, 

GraphPad software, Inc., USA). Different models were tested: Higuchi’s square root of time, 

Korsmeyer-Peppas, One Phase Exponential Assosiation (first-order), Weibull’s equation and 

Zero-order. The best model was chosen accordign to de R2 value. 

Skin permeation studies 

The permeation assay was done with human skin from the abdominal region obtained during 

plastic surgery of a healthy, 40 year-old woman who gave written, informed consent to the use 

of this material for research purposes. The protocol was similar to that followed in the drug 

release study, replacing the dialysis membranes with skin previously dermatomed at 0.4 mm 

thickness, and placed with the stratum corneum facing the donor compartment, according to 

the guidelines.[5,6] Gel was applied on the donor compartment (408.3±52.7 mg of gel, 2.3±0.3 

mg of drug) in contact with the epidermal side of the skin (n=5). The samples were taken at 

given time intervals for 24 hours. Concentrations were determined using HPLC and cumulative 

amounts of drug permeated were plotted. Kinetic parameters were calculated from the 

Median and range values performing a linear least-squares regression in the linear zone of the 

plot,[7] using GraphPad Prism® (version 3.00, GraphPad software, Inc., USA). 

Drug retained inside the skin 

Drug extraction from the skin: At the end of the permeation study, extracted drug from the 

skin was evaluated following a protocol described elsewhere.[2] The skin was removed from 

the Franz cell, cleaned with gauze soaked in a 0.05% solution of sodium dodecyl sulfate and 

washed in distilled water accurately. The permeation area of the skin was then excised, 

punctured with a needle, weighed, and drug contained therein was extracted with 1 mL of the 

corresponding receptor medium during 20 min of sonication. The resulting solutions were 

measured by HPLC, yielding the amount of drug extracted from the skin expressed in (μg g-1 

cm-2). Non-parametric Mann Whitney test statistical analyses were performed to compare 

drug retention from different formulations. [7] 

Drug recovery experiments: A piece of skin from the same patient as in permeation 

experiments was immersed in 1 mL of a 21 µg/mL AEBSF·HCl solution, using as solvent the 

receptor medium used in release and skin permeation studies, and kept at 32°C for 27 hours. 

The skin piece was cleaned with gauze soaked in a 0.05% solution of sodium dodecyl sulfate 

and washed in distilled water accurately. Drug concentrations of both solutions “before 

immersion” and “after immersion” were determined using HPLC in order to know the amount 

of drug that can be retained within the skin. Skin pieces were punctured with a needle, and 

drug was extracted with 1 mL of the corresponding receptor solution using sonication, as 

performed in drug retention experiments. Concentrations of the drug extractions were 

determined using HPLC. The percentage of drug that can be recovered after being retained 

within skin was determined as follows:  

Drug recovery (%) = drug extracted (µg) / drug retained (µg).  
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Drug retention inside the skin: The percentage of drug recovery was used for estimating the 

real amount of drug retained within skin during the skin permeation experiments. 

HPLC determination 

Concentrations of AEBSF·HCl were obtained by HPLC in a Waters 717 plus Autosampler, with a 

600 Controller pump, equipped with a 2996 Photodiode Array Detector, using a 4 µm (3.9 mm 

x 150) Nova-Pack C18 column. The mobile phase consisted of acetonitrile:water (both with 

0.07% of trifluoroacetic acid) 45:55, with a flow rate of 0.8 mL min-1, setting a detection 

wavelength of 226 nm. Each sample had a run time of 4 min. The data were collected using 

Millennium32 version 4.0.0 software from Waters Corporation. 
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SUPPORTING RESULTS 

 

 

Influence of drug concentration on gelation 

 

 

 

 

 

Figure S1. Gel formation time as a function of AEBSF·HCl concentration.  
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Rheology experiments 

 

 

 

Table S1. Critical shear stress and G’ values of gels 1·2Br and 1·AEBSF 

Gel G’ at  = 0.5 Pa (Pa) 

Frequency sweep tests(a) 

 Critical stress (Pa) (b) 

1·2Br 1336  8.1 

1·AEBSF 741  24.1 

a Frequency sweep tests were performed at  = 0.5 Pa for being within the viscoelastic region. b 

Shear stress experiments were performed at 1 Hz frequency. 
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Figure S2. Rheograms of the oscillation sweep frequency test obtained for gels:  

A) 1·2Br, B) 1·AEBSF. 
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Drug incorporation studies 

Identical amounts of drug (8.28 μmol) were dissolved in deuterium oxide (0.75 mL) and put in 

two NMR tubes (A and B), and a spectrum of both was recorded (Record 1). Later on, a 

solution of gelator compound 1·2Br (8.28 μmol) in deuterated methanol (0.75 mL)  was added 

to tube B while the same volume of solvent without compound was added to tube A. Tubes 

were shaken, resulting in gel formation in tube B but not in tube A. The final concentration of 

1·2Br in tube B was 5 mg/mL. A spectrum of both tubes was recorded again (Record 2) and the 

intensity of the drug signals between Records 1 and 2 was compared. In both tubes, a decrease 

in the intensity of drug signals is expected in Record 2 when compared to Record 1 mainly due 

to the dilution generated by the addition of solvent. However, in tube B the decrease is higher 

because of some drug incorporation inside the fibres.  
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Figure S3. Incorporation of AEBSF·HCl in gel 1·2Br. 

a) Tube A, Record 1: AEBSF·HCl (8.28 μmol) in 0.75 mL of deuterium oxide.  

b) Tube A, Record 2: after addition of 0.75 mL of deuterated methanol.  

c) Tube B, Record 1: AEBSF·HCl (8.28 μmol) in 0.75mL of deuterium oxide.  

d) Tube B, Record 2: after addition of 1·2Br (8.28 μmol) in 0.75 mL of deuterated methanol. 
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Microscopy (SEM) 
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Figure S4. SEM micrographs of two-week old gels. a) Gel 1·2Br. b) Gel 1·AEBSF at a drug 

concentration of 5 mg/mL. Yellow scale bar represents 8 μm in all images. 
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Figure S5. SEM images showing the influence of drug concentration and age of the gel on the 

structure of gel 1·AEBSF fibres. a) Influence of the drug concentration in a two-week old gel. 

The increase in drug concentration induces the formation of coils. No drug precipitates are 

observed. b) Influence of the age in a 5 mg/mL drug concentration gel. In a freshly prepared 

gel, coils are still not formed, but fibres are twisted. No drug precipitates are observed. c) 

Precipitates of drug AEBSF·HCl alone, previously in a 5 mg/mL solution. Yellow scale bar 

represents 10 μm in all images. 
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Microscopy (EDX) 

 

 

 

 

 

 

 

Figure S6. EDX spectra from a straight fibre and a coiled fibre of 3 mg/mL 1·AEBSF gel. No 

sulphur or oxygen are observed in the coiled fibre, suggesting a loss of drug. 
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Calorimetric studies 
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Figure S7. DSC thermogram plotting the heat capacity (Cp) of gel formation, which represents 

the speed of gelation, both from gel 1·2Br and gel 1·AEBSF. A magnification is shown in the 

inset. Temperature was decreased at a speed of 1 °C min-1. 

 

Table S2. Influence of AEBSF·HCl addition on gel formation time and temperature. 

 

Gel Tonset
a (ºC) Tmax

b (ºC) Toffset
c (ºC) tgel

d (min) 

1·2Br (without drug) 21.7 20.8 19.4 3.3 

1·AEBSF (exo) 

1·AEBSF (endo)e 

30.5 

23.2 

27.8 

21.2 

23.2 

5.9 

7.3 

17.3 

aTemperature at which the gelling starts. bTemperature at which the gelling occurs at the 

highest speed. cTemperature at which gelling speed stops changing significantly. dTime 

required for gel formation. eGel 1·AEBSF showed both and exothermic and an endothermic 

peak. 
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The thermoreversibility of gel 1·AEBSF is proven by performing various heating-cooling cycles, 

showing a decrease in Cp values, and suggesting that the heating of the gel to 35 ºC 

macroscopically melts the gel, but leaves some gel nucleation points unmelted, which 

facilitates the subsequent gelation. 
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Figure S8. Thermograms of gel 1·AEBSF formation. Different cycles were performed to prove 

thermoreversibility. 
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Drug release 

 

In Figure 4 in the main article. Drug release is shown to follow a One phase exponential 

association model [Y = Ymax (1 – e-K X)], where Y represents the cumulative percentage of drug 

released at a certain time, Ymax is the maximum amount of drug that can be released, K is the 

rate of release (h-1) and X is time (h). Degradation follows a One phase exponential decay 

model, described by the equation: [Y = Span · e –KX + Plateau], where Y is the amount of drug 

present in the receptor chamber at a certain time (%), (Span+Plateau) is the theoretical 

amount of drug at time zero (%), K is the speed of degradation (h-1), and Plateau is the amount 

of drug remaining at an infinite time (%). 

 

 

 

Table S3. Drug release and degradation parameters of AEBSF when released from gel 1·2Br. 

Values represent the Means ± one standard deviation (n=3). 

 Drug release Drug degradation 

Ymax (%)a 91.92 ± 3.23  

K (h-1)b 0.146 ± 0.013 0.013 ± 0.002 

Span (%)c  91.43 ± 2.51 

Plateau (%)e  7.28 ± 3.42 

Half-life (h)f  55.57 

R2 0.9967 0.9970 

aMaximum drug release (%). bRelease/degradation speed rate (h-1). cTheoretical amount of 

drug at time zero in degradation model (%)  eDrug remaining at infinite time fTime for the 

degradation of 50% of drug remaining in receptor chamber. 
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Skin permeation 

 

Table S4. Skin permeation parameters of AEBSF  from gel 1·2Br.   

Gel 1·AEBSF 

(5 mg/mL) 

A18
 (µg/cm2)a 40.64 (40.62 - 72.63) 

A21 (µg/cm2)a 45.88 (40.40 - 79.43) 

A24 (µg/cm2)a 72.17 (49.20 - 95.59) 

A27 (µg/cm2)a 80.72 (66.40 - 122.05) 

J (μg/h·cm2) b 5.27 (3.01 – 5.71) 

Tlag (h)c 6.59 (6.44 – 11.47) 

Kp · 103 (cm/h)d 1.05 (0.60 – 1.14) 

As (µg/g·cm2)e 90.59 (40.31 - 107.17) 

Percentage of 

recovery (%)f 

2.6% 

As corr. (µg/g·cm2)g 3484.20 (1550.38 – 4121.92) 

aA18, A21, A24, A27 is the cumulative amount of drug permeated after 18, 21, 24 and 27 

hours, respectively. bJ represents the permeation flux of drug through the skin (μg/h·cm2). cTlag 

represents the time the drug takes to completely cross the skin to the receptor chamber. dKp is 

the Permeability coefficient (cm/h) eAs is the amount of drug extracted after the experiment 

per gram and square centimeter of skin (µg/g·cm2). fPercentage of drug that can be extracted 

out of all the drug retained inside the skin. gTotal estimated amount of drug retained inside the 

skin according to the percentage of recovery. Values represent the Median and range. 
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Figure S9. SEM images showing the influence of drug release on the morphology of the fibres. 

Image are shown for the fresh gels 1·2Br and 1·AEBSF, at 6 hours under release conditions and 

at 16 hours under release conditions. The lumpy material for the samples held under release 

conditions arises from the buffer used under those conditions. 
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Figure S10. SEM image of 1·AEBSF after 16 hours under release conditions with the coil 

structures circled.  
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Powder X-ray Diffraction 
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Figure S11.  Powder X-ray diffractograms of a fresh gel with drug 1·AEBSF (A) and after 16h of 

release (B); an aged gel (2 weeks) with drug (C) and after 16h of release 
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Figure S12. A possible explanation for the generation of stress - and resulting curvature - upon 

release of the drug from the composite gel. Counter-ions (the anions to both gelator and drug) 

are not shown in the cartoon but are believed to be located between the lamellae in contact 

with the cations.  

 


