9 research outputs found

    Highly fluorescent guanosine mimics for folding and energy transfer studies

    Get PDF
    Guanosines with substituents at the 8-position can provide useful fluorescent probes that effectively mimic guanine residues even in highly demanding model systems such as polymorphic G-quadruplexes and duplex DNA. Here, we report the synthesis and photophysical properties of a small family of 8-substituted-2â€Č-deoxyguanosines that have been incorporated into the human telomeric repeat sequence using phosphoramidite chemistry. These include 8-(2-pyridyl)-2â€Č-deoxyguanosine (2PyG), 8-(2-phenylethenyl)-2â€Č-deoxyguanosine (StG) and 8-[2-(pyrid-4-yl)-ethenyl]-2â€Č-deoxyguanosine (4PVG). On DNA folding and stability, 8-substituted guanosines can exhibit context-dependent effects but were better tolerated by G-quadruplex and duplex structures than pyrimidine mismatches. In contrast to previously reported fluorescent guanine analogs, 8-substituted guanosines exhibit similar or even higher quantum yields upon their incorporation into nucleic acids (Ω = 0.02-0.45). We have used these highly emissive probes to quantify energy transfer efficiencies from unmodified DNA nucleobases to 8-substituted guanosines. The resulting DNA-to-probe energy transfer efficiencies (ηt) are highly structure selective, with ηt(duplex) < ηt(single-strand) < ηt(G-quadruplex). These trends were independent of the exact structural features and thermal stabilities of the G-quadruplexes or duplexes containing them. The combination of efficient energy transfer, high probe quantum yield, and high molar extinction coefficient of the DNA provides a highly sensitive and reliable readout of G-quadruplex formation even in highly diluted sample solutions of 0.25 n

    8-substituted-2'-deoxyguanosines as internal probes for DNA folding and energy transfer

    Full text link
    Nucleic acids are the information carriers of life, encoding all critical components necessary for cellular metabolism and replication. Surprisingly, only 2% of the human genome codes directly for proteins. The remaining 98% is composed of pseudogenes, noncoding functional RNA, introns, tandem repeats, transposons and virus-like elements. An unknown portion of these sequences play regulatory roles in mediating gene expression and other cellular processes. For certain sequences, these functions are likely mediated by the formation of diverse secondary structures such as hairpins, cruciforms, triplexes and quadruplex structures. In particular, certain guanine-rich DNA sequences are known to self-assemble into four-stranded structures called G-quadruplexes that have been proposed to possess important biological functions. Direct evidence for their existence in vivo, however, has remained elusive. The development of highly fluorescent guanine analogs that maintain their hydrogen bonding capacity may facilitate the monitoring of G-quadruplex formation in vitro and in vivo. For this purpose, a small library of 8-(substituted)-2’-deoxyguanosines was synthesized and evaluated. A new synthetic strategy involving O6 protection of 8-bromo-2’-deoxyguanosine was developed to enable efficient palladium-catalyzed cross-coupling reactions at C8. The resulting 8-substituted-2'-deoxyguanosines retain unperturbed Watson & Crick and Hoogsteen hydrogen bonding faces and are “push-pull” fluorophores that can exhibit environmentally-sensitive quantum yields (Ί = 0.001 – 0.72) due to excited-state proton transfer reactions with bulk solvent. Among these, 8-(2-pyridyl)-2’-deoxyguanosine (2PyG) was identified as a particularly interesting candidate. In contrast to commonly used base analogs such as 2-aminopurine (2AP), 2PyG is not significantly quenched upon titration with guanosine monophosphate (GMP). The corresponding ÎČ-cyanoethyl phosphoramidite of 2PyG was therefore synthesized for incorporation into G-quadruplex and duplex DNA structures. Remarkably, the quantum yield of 2PyG is generally higher in the context of nucleic acids (Ί = 0.03 - 0.15) as compared to the free nucleoside in water (Ί = 0.02). 2PyG can be directly incorporated into the Watson & Crick base pair of duplex DNA and into the G-tetrads of natively-folded G-quadruplexes with relatively little impact on global structure or stability PyG has enabled the first quantification of DNA-to-probe energy transfer efficiencies (ηt) in G-quadruplexes. These studies revealed highly efficient energy transfer reactions in G-quadruplex structures under conditions of excess salt (ηt = 0.11 – 0.41). In contrast, G-quadruplexes folded using molecular crowding under salt-deficient conditions (40% polyethylene glycol) show little or no energy transfer. To investigate the specific role played by 2PyG in the unusually efficient energy transfer reactions in G-quadruplexes, 8-(2-phenylethenyl)-2’-deoxyguanosine (StG) and 8-[2-(pyrid-4-yl)-ethenyl]-2’- deoxyguanosine (4PVG) phosphoramidites were synthesized and introduced in oligonucleotides to evaluate their ability to report DNA folding and internal energy transfer. Interestingly, StG and 4PVG have similar properties as compared to 2PyG, including retention of emission efficiency in the context of nucleic acids, minimal disruption of their structures and energy acceptor properties in the context of DNA. In addition, their emission maxima are red-shifted by 35 – 75 nm as compared to 2PyG. The three fluorescent probes all report that energy transfer efficiencies are highly structure dependent with ηt(duplex) G-quadruplex). 8-Substituted-2’-deoxyguanosines, prepared by the addition of small conjugated groups to the C8-position of guanine are powerful and versatile internal fluorescent probes. In the context of DNA, the combination of energy transfer, high probe quantum yield, and high oligonucleotide molar extinction coefficient provides a highly sensitive and reliable readout of DNA folding and G-quadruplex formation in vitro. In addition, the incorporation of a single pyridine ring into DNA structures such as in 2PyG provides site-specific control of metal localization and therefore a new powerful tool for studying the effects of N7 metallation on the structure, stability, and electronic properties of nucleic acids. Zusammenfassung NukleinsĂ€uren sind die InformationstrĂ€ger des Lebens, in denen alle entscheidenden Informationen kodiert sind, die fĂŒr den Zellstoffwechsel und die Replikation benötigt werden. Erstaunlicherweise werden nur 2% des menschlichen Genoms zur Kodierung von Proteinen genutzt. Die restlichen 98% bestehen aus Pseudogenen, nicht-kodierender funktioneller RNA, Introns, Tandem-Sequenzen, Transposons und Virus Ă€hnlichen Elementen. Ein unbekannter Anteil dieser Sequenzen nimmt eine regulierende Funktion bei der Genexpression und bei weiteren zellulĂ€ren Prozessen ein. Bei bestimmten Sequenzen werden diese Funktionen wahrscheinlich durch die Bildung diverser sekundĂ€rer Strukturen wie Hairpins, Kreuzförmiger, Triplex- und Quadruplexstrukturen ausgelöst. Insbesondere können sich bestimmte guaninreiche DNA Sequenzen eigenstĂ€ndig in vierstrĂ€ngigen Strukturen, sogenannten G-Quadruplexen, anordnen, von welchen man annimmt, dass sie wichtige biologische Funktionen haben. Ein direkter, in vivo Beweis dieser Strukturen hat sich bis jetzt jedoch als schwierig erwiesen. Die Entwicklung von stark fluoreszierenden Guanin-derivaten, welche die FĂ€higkeit zur WasserstoffbrĂŒckenbildung beibehalten, könnte die Beobachtung der Bildung von G-Quadruplexen in vitro und in vivo ermöglichen. Zu diesem Zweck wurde eine Serie von 8-(substituierten)-2’- Deoxyguanosinen synthetisiert und untersucht. Es wurde eine neue Synthesestrategie entwickelt, bei welcher die O6-Position von 8-Bromo-2’-deoxyguanosin geschĂŒtzt wird, um die Palladium-katalysierte Kreuzkupplungsreaktion am C8 effizient durchzufĂŒhren. Die so synthetisierten 8-(substituierten)-2’-Deoxyguanosine behalten ihre ĂŒblichen Watson & Crick und Hoogsteen WasserstoffbrĂŒcken-FlĂ€chen bei und sind „push-pull“ Fluorophore, welche eine umgebungsempfindliche Quantenausbeute (Ί = 0.001– 0.72) durch ProtonenĂŒbertragungsreaktionen mit dem Lösungsmittel im angeregten Zustand aufweisen können. Aus diesen Varianten wurde 8-(2-Pyridyl)-2’-deoxyguanosin (2PyG) als besonders vielversprechender Kandidat ermittelt. Im Gegensatz zu den gewöhnlich verwendeten Nukleobasen-Derivaten wie z.B. 2-Aminopurine (2AP) wird 2PyG bei Titration mit Guanosinmonophosphat (GMP) nicht wesentlich gequencht. Das zu 2PyG korrespondierende ÎČ-Cyanoethyl-phosphoramidite wurde deshalb zur Einbindung in G-Quadruplex und Duplex-DNA-Strukturen synthetisiert. Interessanterweise ist die 4 Quantenausbeute von 2PyG allgemein bei Einbindung in NukleinsĂ€uren höher (Ί = 0.03 - 0.15) als beim freien Nukleosid in Wasser (Ί = 0.02). 2PyG kann direkt in die Watson & Crick Basenpaare von Duplex-DNA und in die G-Tetraden von natĂŒrlich gefalteten G-Quadruplexen eingebaut werden. Dabei ist der Einfluss auf die globale Struktur und StabilitĂ€t relativ gering. 2PyG hat es ermöglicht, erstmals in einer DNA-Testsequenz die Energietransfer-Effizienz (ηt) in G-Quadruplexen quantitativ zu bestimmen. Diese Untersuchung offenbarte unter SalzĂŒberschuss hocheffiziente Energietransferreaktionen in G-Quadruplex-Strukturen (ηt = 0.11 – 0.41). Im Gegensatz dazu zeigen G-Quadruplexe, welche unter salzarmen Bedingungen gefaltet wurden (40% Polyethylenglykol), keinen oder nur sehr geringen Energietransfer. Zur Untersuchung der spezifischen Rolle von 2PyG bei den ungewöhnlich effizienten Energietransferreaktionen in G-Quadruplexen wurden 8-(2-Phenylethenyl)-2’- deoxyguanosin (StG) und 8-[2-(Pyrid-4-yl)-ethenyl]-2’-deoxyguanosin (4PVG) Phosphoramidite synthetisiert und in Oligonukleotide eingebaut, um deren FĂ€higkeit zum Nachweis von DNA-Faltung und internem Energietransfer zu untersuchen. Erstaunlicherweise haben StG und 4PVG Ă€hnliche Eigenschaften wie 2PyG einschliesslich des Erhalts der Emissionseffizienz innerhalb von NukleinsĂ€uren, des minimalen Einflusses auf deren Struktur und der Energieakzeptoreigenschaften innerhalb von DNA. ZusĂ€tzlich sind deren Emissionsmaxima im Vergleich zu 2PyG um 35 – 75 nm in den Rotbereich verschoben. Alle drei Fluoreszenzmarker zeigen mit ηt(duplex) < ηt(single-strand) < ηt(G-quadruplex) eine starke StrukturabhĂ€ngigkeit der Energietransfereffizienz auf. Diese Tendenzen sind unabhĂ€ngig von den genauen strukturellen Merkmalen und thermischen StabilitĂ€ten der G-Quadruplexe oder Duplexe, welche diese Marker enthalten. ZusĂ€tzlich zu seiner Funktion als Fluoreszenz-Marker fĂŒr G-Quadruplex-Faltung bindet 2PyG ĂŒber einen zweizĂ€hnigen Effekt, welcher durch das Guanin-N7 und das Pyridinyl-N2 Atom ermöglicht wird, selektiv Cu(II), Ni(II), Cd(II), und Zn(II). VerĂ€nderungen in der Nukleosid-Fluoreszenz, ausgelöst durch Metallbindungen an 2PyG, wurden zur Charakterisierung der MetallbindungsaffinitĂ€t und -spezifitĂ€t genutzt. Nach Einbindung in gefaltete NukleinsĂ€uren bindet 2PyG selektiv Cu(II), Ni(II) und Cd(II) mit 10- bis 1000- fach stĂ€rkerer BindungsaffinitĂ€t im Vergleich zu unmodifizierten Metallbindungsstellen in der DNA. Diese AffinitĂ€ten hĂ€ngen, in Übereinstimmung mit der N7 Bindung, vom Faltungszustand der Oligonukleotide (Duplex > G-Quadruplex) ab. Durch Addition von kleinen konjugierten Gruppen an der C8-Position des GuaninmolekĂŒls erhaltene 8-(substituierte)-2’-Deoxyguanosin sind leistungsstarke und vielseitige interne Fluoreszenzmarker. Im DNA-Kontext ermöglicht die Kombination von Energietransfer, hoher Quantenausbeute des Markers und hohen molaren Oligonukleotid- Extinktionskoeffizienten eine hochempfindliche und zuverlĂ€ssige Anzeige von DNA-Faltung und G-Quadruplex-Bildung in vitro. ZusĂ€tzlich bietet die Einbindung eines einzelnen Pyridinringes in DNA-Strukturen wie zum Beispiel 2PyG die Möglichkeit, Metall-Bindungsstellen zu steuern. Damit ergibt sich ein neues, leistungsstarkes Werkzeug zur Untersuchung der Effekte der N7 Metallkomplexierung auf die Struktur, StabilitĂ€t und die elektronischen Eigenschaften von NukleinsĂ€uren

    Highly fluorescent guanosine mimics for folding and energy transfer studies

    Get PDF
    Guanosines with substituents at the 8-position can provide useful fluorescent probes that effectively mimic guanine residues even in highly demanding model systems such as polymorphic G-quadruplexes and duplex DNA. Here, we report the synthesis and photophysical properties of a small family of 8-substituted-2â€Č-deoxyguanosines that have been incorporated into the human telomeric repeat sequence using phosphoramidite chemistry. These include 8-(2-pyridyl)-2â€Č-deoxyguanosine (2PyG), 8-(2-phenylethenyl)-2â€Č-deoxyguanosine (StG) and 8-[2-(pyrid-4-yl)-ethenyl]-2â€Č-deoxyguanosine (4PVG). On DNA folding and stability, 8-substituted guanosines can exhibit context-dependent effects but were better tolerated by G-quadruplex and duplex structures than pyrimidine mismatches. In contrast to previously reported fluorescent guanine analogs, 8-substituted guanosines exhibit similar or even higher quantum yields upon their incorporation into nucleic acids (Ω = 0.02–0.45). We have used these highly emissive probes to quantify energy transfer efficiencies from unmodified DNA nucleobases to 8-substituted guanosines. The resulting DNA-to-probe energy transfer efficiencies (ηt) are highly structure selective, with ηt(duplex) < ηt(single-strand) < ηt(G-quadruplex). These trends were independent of the exact structural features and thermal stabilities of the G-quadruplexes or duplexes containing them. The combination of efficient energy transfer, high probe quantum yield, and high molar extinction coefficient of the DNA provides a highly sensitive and reliable readout of G-quadruplex formation even in highly diluted sample solutions of 0.25 nM

    PLGA-PEG-supported Pd Nanoparticles as Efficient Catalysts for Suzuki-Miyaura Coupling Reactions in Water

    Get PDF
    Chemical transformations that can be performed selectively under physiological conditions are highly desirable tools to track biomolecules and manipulate complex biological processes. Here, we report a new nanocatalyst consisting of small palladium nanoparticles stabilized on the surface of PLGA-PEG nanoparticles that show excellent catalytic activity for the modification of biological building blocks through Suzuki-Miyaura cross-coupling reactions in water. Brominated or iodinated amino acids were coupled with aryl boronic acids in phosphate buffer in good yields. Interestingly, up to 98% conversion into the coupled amino acid could be achieved in 2 h at 37 °C using the stable, water-soluble cyclic triolborate as organometallic partner in the presence of only 1 mol% of palladium. These results pave the way for the modification of biomolecules in complex biological systems such as the intracellular space
    corecore