7 research outputs found
Assessing Coastal Plain Risk Indices for Subsurface Phosphorus Loss
Phosphorus (P) Index evaluations are critical to advancing nutrient management planning in the United States. However, most assessments until now have focused on the risks of P losses in surface runoff. In artificially drained agroecosystems of the Atlantic Coastal Plain, subsurface flow is the predominant mode of P transport, but its representation in most P Indices is often inadequate. We explored methods to evaluate the subsurface P risk routines of five P Indices from Delaware, Maryland (two), Virginia, and North Carolina using available water quality and soils datasets. Relationships between subsurface P risk scores and published dissolved P loads in leachate (Delaware, Maryland, and North Carolina) and ditch drainage (Maryland) were directionally correct and often statistically significant, yet the brevity of the observation periods (weeks to several years) and the limited number of sampling locations precluded a more robust assessment of each P Index. Given the paucity of measured P loss data, we then showed that soil water extractable P concentrations at depths corresponding with the seasonal high water table (WEPWT) could serve as a realistic proxy for subsurface P losses in ditch drainage. The associations between WEPWT and subsurface P risk ratings reasonably mirrored those obtained with sparser water quality data. As such, WEPWT is seen as a valuable metric that offers interim insight into the directionality of subsurface P risk scores when water quality data are inaccessible. In the long term, improved monitoring and modeling of subsurface P losses clearly should enhance the rigor of future P Index appraisals
Recommended from our members
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage
Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
Fertilization strategy can affect the estimation of soil nitrogen mineralization potential with chemical methods
Aims: Our objective was to evaluate if the relationship between quick indices of mineralizable N and soil N mineralization potential (No) is affected by long-term fertilization with inorganic fertilizers (IF) and/or poultry litter (PL). Methods: Samples from four long-term research sites that were fertilized with IF, IF+PL, or PL (>10 years) were aerobically incubated for 24 weeks to determine No. Soil No was then related to the results from the Illinois soil test analysis (ISNT), extractions with hot KCl, NaOH, or phosphate-borate (PB), and an anaerobic incubation (Nan). Results: All evaluated chemical methods were correlated with No (R2 > 0.59). However, the models to describe the association between the chemical methods and No differed depending on the fertilizer treatment, due to the inability of chemical indices to estimate the No increase observed in some PL-amended soils. In contrast, the relationship between Nan and No was not affected by fertilization strategy. Conclusions: Chemical indices can lead to the underestimation of soil N mineralization potential in PL-treated soils when the indices are calibrated in IF-amended soils, whereas the biological method Nan predicted No independently from the field’s fertilization history.Fil: Wyngaard, Nicolás. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cabrera, Miguel L.. University of Georgia; Estados UnidosFil: Shober, Amy. University of Delaware. Plant and Soil Sciences Department; Estados UnidosFil: Kanwar, R.. Iowa State University. Department of Agricultural and Bio-systems Engineering; Estados Unido
Evaluation of phosphorus indices after twenty years of science and development
Citation: Nelson, N.O. and Shober, A.L. (2012), Evaluation of Phosphorus Indices after Twenty Years of Science and Development. J. Environ. Qual., 41: 1703-1710. doi:10.2134/jeq2012.0342The P Index was proposed as a nutrient management tool in 1992 and has been implemented as such for the past decade. However, lack of water quality improvement in agricultural watersheds and discrepancies in P loss ratings between P indices have raised questions about continued use of the P Index. In response to these concerns, a symposium was held as part of the 2011 ASA, CSSA, SSSA annual meetings. This symposium produced a special collection of seven papers describing the role of P indices in P management, evaluation of P indices, new models for assessing P loss, methods to improve P indices, and changes in producer behavior resulting from P Index use. The objectives of this introductory paper are to provide background on the P Index concept, overviews of the special collection papers, and recommendations for future P Index evaluation and development research. The papers in this special collection conclude that P indices can provide accurate assessments of P loss but must be evaluated appropriately. Evaluation will require compiling large regional P loss datasets at field and small watershed scales. Simulation models may be used to generate P loss estimates; however, models must be calibrated and validated to ensure their accuracy. Further development of P indices will require coordinated regional efforts to identify common P Index frameworks and standardized interpretations. Stringent P Index evaluations will expand the utility of P indices for critical source area identification and strategic best management practice implementation by regulatory, education, and scientific communities alike
Recommended from our members
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage
Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity.Foundation for Food and Agriculture ResearchOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
An evaluation of carbon indicators of soil health in long-term agricultural experiments
Soil organic carbon (SOC) is closely tied to soil health. However, additional biological indicators may also provide insight about C dynamics and microbial activity. We used SOC and the other C indicators (potential C mineralization, permanganate oxidizable C, water extractable organic C, and β-glucosidase enzyme activity) from the North American Project to Evaluate Soil Health Measurements to examine the continental-scale drivers of these indicators, the relationships among indicators, and the effects of soil health practices on indicator values. All indicators had greater values at cooler temperatures, and most were greater with increased precipitation and clay content. The indicators were strongly correlated with each other at the site-level, with the strongest relationship between SOC and permanganate oxidizable C. The indicator values responded positively to decreased tillage, inclusion of cover crops, application of organic nutrients, and retention of crop residue, but not the number of harvested crops in a rotation. The effect of decreased tillage on the C indicators was generally greater at sites with higher precipitation. The magnitude and direction of the response to soil health practices was consistent across indicators within a site but measuring at least two indicators would provide additional confidence of the effects of management, especially for tillage. All C indicators responded to management, an essential criterion for evaluating soil health. Balancing the cost, sensitivity, interpretability, and availability at commercial labs, a 24-hr potential C mineralization assay could deliver the most benefit to measure in conjunction with SOC.Samuel Roberts Noble FoundationOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Evaluation of aggregate stability methods for soil health
Aggregate stability is a commonly used indicator of soil health because improvements in aggregate stability are related to reduced erodibility and improved soil–water dynamics. During the past 80 to 90 years, numerous methods have been developed to assess aggregate stability. Limited comparisons among the methods have resulted in varied magnitudes of response to soil health management practices and varied influences of inherent soil properties and climate. It is not clear whether selection of a specific method creates any advantage to the investigator. This study assessed four commonly used methods of measuring aggregate stability using data collected as part of the North American Project to Evaluate Soil Health Measurements. The methods included water stable aggregates using the Cornell Rainfall Simulator (WSACASH), wet sieved water stable aggregates (WSAARS), slaking captured and adapted from SLAKES smart-phone image recognition software (STAB10), and the mean weight diameter of water stable aggregates (MWD). Influence of climate and inherent soil properties at the continental scale were analyzed in addition to method responses to rotation diversity, cash crop count, residue management, organic nutrient amendments, cover crops, and tillage. The four methods were moderately correlated with each other. All methods were sensitive to differences in climate and inherent soil properties between sites, although to different degrees. None measured significant effects from rotation diversity or crop count, but all methods detected significant increases in aggregate stability resulting from reduced tillage. Significant increases or positive trends were observed for all methods in relation to cover cropping, increased residue retention, and organic amendments, except for STAB10, which expressed a slightly negative response to organic amendments. Considering these results, no single method was clearly superior and all four are viable options for measuring aggregate stability. Therefore, secondary considerations (e.g., cost, method availability, increased sensitivity to a specific management practice, or minimal within-treatment variability) driven by the needs of the investigator, should determine the most suitable method.General Mills IncOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]