992 research outputs found

    A Census of the Avifauna of the FAP 301 Project Area Addenda 1 and 2

    Get PDF
    Report issued on: issued July 25, 1996INHS Technical Report prepared for Illinois Department of Transportatio

    Using the UM dynamical cores to reproduce idealised 3D flows

    Full text link
    We demonstrate that both the current (New Dynamics), and next generation (ENDGame) dynamical cores of the UK Met Office global circulation model, the UM, reproduce consistently, the long-term, large-scale flows found in several published idealised tests. The cases presented are the Held-Suarez test, a simplified model of Earth (including a stratosphere), and a hypothetical tidally locked Earth. Furthermore, we show that using simplifications to the dynamical equations, which are expected to be justified for the physical domains and flow regimes we have studied, and which are supported by the ENDGame dynamical core, also produces matching long-term, large-scale flows. Finally, we present evidence for differences in the detail of the planetary flows and circulations resulting from improvements in the ENDGame formulation over New Dynamics.Comment: 34 Pages, 23 Figures. Accepted for publication in Geoscientific Model Development (pre-proof version

    Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    Full text link
    The failure of the population of micro-junctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are so-called slow fronts, which are recently discovered fronts much slower than the materials' sound speeds. Despite intense modelling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multi-scale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among micro-junctions. Our results show that slow fronts are qualitatively different from faster fronts. Since the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults.Comment: 35 pages, 5 primary figures, 6 supporting figures. Post-print version with improvements from review process include

    A mixed local and nonlocal supercritical Dirichlet problems

    Full text link
    In this work, we consider a mixed local and nonlocal Dirichlet problem with supercritical nonlinearity. We first establish a multiplicity result for the problem \begin{equation} Lu=|u|^{p-2}u+\mu|u|^{q-2}u~~\text{in}~~\Omega,~~~~~ u=0~~\text{in}~~\mathbb{R}^N\setminus\Omega,~~~ (0.1) \end{equation} where L=Δ+(Δ)sL=-\Delta+(-\Delta)^s for s(0,1)s\in(0,1) and ΩRN\Omega\subset\mathbb{R}^N is a bounded domain. Precisely, we show that problem (0.1) for 1<q<2<p1<q<2<p has a positive solution as well as a sequence of sign-changing solutions with a negative energy for small values of μ\mu. Here uu can be either a scalar function, or a vector valued function so that (0.1) turns into a system with supercritical nonlinearity. Moreover, whenever the domain is symmetric, we also prove the existence of symmetric solutions enjoying the same symmetry properties. We shall also prove an existence result for the supercritical Hamiltonian system \begin{equation} Lu=|v|^{p-2}v,~~~~~~~ Lv=|u|^{d-2}u+\mu |u|^{q-2}u \end{equation} with the Dirichlet boundary condition on Ω\Omega where 1<q<2<p,d1<q<2<p, d. Our method is variational, and in both problems the lack of compactness for the supercritical problem is recovered by working on a closed convex subset of an appropriate function space

    A uniform analysis of HD209458b Spitzer/IRAC lightcurves with Gaussian process models

    Full text link
    We present an analysis of Spitzer/IRAC primary transit and secondary eclipse lightcurves measured for HD209458b, using Gaussian process models to marginalise over the intrapixel sensitivity variations in the 3.6 micron and 4.5 micron channels and the ramp effect in the 5.8 micron and 8.0 micron channels. The main advantage of this approach is that we can account for a broad range of degeneracies between the planet signal and systematics without actually having to specify a deterministic functional form for the latter. Our results do not confirm a previous claim of water absorption in transmission. Instead, our results are more consistent with a featureless transmission spectrum, possibly due to a cloud deck obscuring molecular absorption bands. For the emission data, our values are not consistent with the thermal inversion in the dayside atmosphere that was originally inferred from these data. Instead, we agree with another re-analysis of these same data, which concluded a non-inverted atmosphere provides a better fit. We find that a solar-abundance clear-atmosphere model without a thermal inversion underpredicts the measured emission in the 4.5 micron channel, which may suggest the atmosphere is depleted in carbon monoxide. An acceptable fit to the emission data can be achieved by assuming that the planet radiates as an isothermal blackbody with a temperature of 1484±181484\pm 18 K.Comment: 18 pages, 5 figures, 6 tables. Accepted by MNRA

    Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere

    Get PDF
    We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.Comment: 26 pages, 22 Figures. Accepted for publication in Astronomy and Astrophysic

    Habitable Climate Scenarios for Proxima Centauri b With a Dynamic Ocean

    Full text link
    The nearby exoplanet Proxima Centauri b will be a prime future target for characterization, despite questions about its retention of water. Climate models with static oceans suggest that an Earth-like Proxima b could harbor a small dayside region of surface liquid water at fairly warm temperatures despite its weak instellation. We present the first 3-dimensional climate simulations of Proxima b with a dynamic ocean. We find that an ocean-covered Proxima b could have a much broader area of surface liquid water but at much colder temperatures than previously suggested, due to ocean heat transport and depression of the freezing point by salinity. Elevated greenhouse gas concentrations do not necessarily produce more open ocean area because of possible dynamic regime transitions. For an evolutionary path leading to a highly saline present ocean, Proxima b could conceivably be an inhabited, mostly open ocean planet dominated by halophilic life. For an ocean planet in 3:2 spin-orbit resonance, a permanent tropical waterbelt exists for moderate eccentricity. Simulations of Proxima Centauri b may also be a model for the habitability of planets receiving similar instellation from slightly cooler or warmer stars, e.g., in the TRAPPIST-1, LHS 1140, GJ 273, and GJ 3293 systems.Comment: Submitted to Astrobiology; 38 pages, 12 figures, 5 table
    corecore