12 research outputs found

    Expression of NRG1 and its receptors in human bladder cancer

    Get PDF
    BACKGROUND: Therapies targeting ERBB2 have shown success in the clinic. However, response is not determined solely by expression of ERBB2. Levels of ERBB3, its preferred heterodimerisation partner and ERBB ligands may also have a role. METHODS: We measured NRG1 expression by real-time quantitative RT–PCR and ERBB receptors by western blotting and immunohistochemistry in bladder tumours and cell lines. RESULTS: NRG1a and NRG1b showed significant coordinate expression. NRG1b was upregulated in 78 % of cell lines. In tumours, there was a greater range of expression with a trend towards increased NRG1a with higher stage and grade. Increased expression o

    Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.

    Get PDF
    International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice

    La Bretagne collectionne l'art de notre temps : Les vingt ans du FRAC Bretagne

    No full text
    This catalogue documents six exhibitions organized in the summer of 2001 to celebrate the 20th anniversary of the Brittany FRAC. The curators of six institutions affiliated with the FRAC elaborate on the development of their collection through themes that best represent them (space, landscape, history…). President of FRAC P. Le Treut states how the Brittany region, which holds collections including works by nearly 140 artists, is open to current art produced elsewhere while sharing its specific heritage. List of works. Texts in French with English translation booklet. 17 bibl. ref

    A GEIL flow cytometry consensus proposal for quantification of plasma cells: application to differential diagnosis between MGUS and myeloma.

    No full text
    This standardized multiparameter flow cytometric approach allows for the detection and quantification of bone marrow tumor plasma-cell infiltration in nearly all cases of MGUS and myeloma, independently of debris and hemodilution. This approach may also prove useful for the detection of minimal residual disease

    Mutual benefits of B-ALL and HLDA/HCDM HLDA 9th Barcelona 2010.

    No full text
    International audienceThe B-cell panel of the ninth HLDA was applied in a multicentre fashion to cryopreserved cells from 46 patients with acute lymphoblastic leukemia. The reagents were aliquoted and shipped to volunteer participants from the French Groupe d'Etude Immunologique des Leucémies (GEIL). All samples were tested in flow cytometry, and the results collected as of the strength of labeling of the leukemic clone as negative, weak or strong. Among the 64 antibodies tested, the strongest and most frequent staining was observed for CD305 (LAIR), CD229 (Ly9), CD200 (OX-2) and, to a lesser extent, CD361 (EVI2b). Details of the observations, and information about the molecules tested are provided in the manuscript as well as a summary table

    <i>SHANK</i> variants in patients with ASD and controls.

    No full text
    <p>Coding-sequence variants identified only in patients with ASD (upper panel), shared by patients and controls (lower panel and underlined), and present only in controls (lower panel). Truncating variants are indicated in red. The variants predicted as deleterious or benign are indicated in orange and green, respectively. Coding-sequence variants with a proven <i>in vitro</i> functional impact are indicated with black stars. Conserved domains are represented in color: SPN (yellow), Ankyrin (red), SH3 (orange), PDZ (blue) and SAM (green).</p

    Prevalence and meta-analysis of coding-sequence variant studies in ASD.

    No full text
    <p>A. The prevalence and the confidence interval from a set of single coding-sequence variant studies, and the pooled prevalence and the confidence interval of the meta-analysis. The prevalence is indicated by circles in red, pink, purple and black for “ASD all” (all ASD patients), “ASD IQ<70” (patients with ID; IQ<70), “ASD IQ>70” (patients with normal IQ), and “CTRL” (controls), respectively. Three categories are used to study the prevalence of coding-sequence variants in ASD and controls: all or “A” (all mutation), Damaging or “D” (damaging missense mutation; score obtained from polyphen-2), and Truncating or “T” (mutation altering SHANK protein). The plotted circles are proportional to the corresponding sample size. B. Meta-analysis of coding-sequence variant studies altering <i>SHANK</i> genes. For each study, the Odds ratio and confidence interval is given. Each meta-analysis is calculated using inverse variance method for fixed (IV-FEM) and random effects (IV-REM). The statistics measuring heterogeneity (Q, I<sup>2</sup> and Tau<sup>2</sup>) are indicated. The number under the scatter plot correspond to independent studies: 1 = “This study”, 2 = “ Sato et al. (2012) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Sato1" target="_blank">[19]</a>”, 3 = “Berkel et al. (2010) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Berkel1" target="_blank">[14]</a>”, 4 = “Leblond et al. (2012) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Leblond1" target="_blank">[18]</a>”, 5 = “Boccuto et al. (2012) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Boccuto1" target="_blank">[17]</a>”, and 6 = “[This Study and Durand et al. 2007 <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Durand1" target="_blank">[6]</a>]”, 7 = “[Gauthier et al. (2009–2010) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Gauthier1" target="_blank">[16]</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Gauthier2" target="_blank">[47]</a>]”, 8 = “Moessner et al. (2007) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Moessner1" target="_blank">[13]</a>”, 9 = “Schaff et al. (2011) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Schaaf1" target="_blank">[35]</a>”. IV, Inverse Variance; FEM, Fixed Effect Method; REM, Random Effect Method; OR, Odds Ratio; CI, Confidence Interval; IQ, Intellectual Quotient; CNV, Copy Number Variant.</p

    Scatter plots of the intellectual quotient and the Autism Diagnostic Interview-Revised (ADI-R) scores of the patients with ASD screened for <i>SHANK1-3</i> mutations.

    No full text
    <p>Mutations in <i>SHANK1-3</i> are associated with a gradient of severity in cognitive impairment. <i>SHANK1</i> mutations were reported in patients without ID (green dots). <i>SHANK2</i> mutations were reported in patients with mild ID (orange dots). <i>SHANK3</i> mutations were found in patients with moderate to severe deficit (red dots). Black dots correspond to the patients enrolled in the PARIS cohort screened for deleterious <i>SHANK1-3</i> mutations (n = 498). In addition to the PARIS cohort <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Durand1" target="_blank">[6]</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Pinto1" target="_blank">[8]</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Leblond1" target="_blank">[18]</a>, three patients with a <i>SHANK1</i> deletion <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Sato1" target="_blank">[19]</a> and two patients with a <i>SHANK2</i> deletion <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Berkel1" target="_blank">[14]</a> were included in the scatter plot. A high score of the ADI-R is associated with a more severe profile. The threshold of the “Social”, “Verbal”, “Non-Verbal” and “Repetitive Behavior” Scores are 10, 8, 7 and 3, respectively.</p
    corecore