21 research outputs found

    Niemann-Pick disease type C clinical database: Cognitive and coordination deficits are early disease indicators

    Get PDF
    BACKGROUND: The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NP-C) is characterized by a broad clinical variability involving neurological, psychiatric and systemic signs. Diverse patterns of disease manifestation and progression considerably delay its diagnosis. Here we introduce the NP-C clinical database (NPC-cdb) to systematically obtain, store and analyze diagnostic and clinical findings in patients with NP-C. We apply NPC-cdb to study NP-C temporal expression in a large German-Swiss patient cohort. METHODS: Current and past medical history was systematically acquired from 42 patients using tailored questionnaires. Manifestation of 72 distinct neuropsychiatric signs was modeled over the course of disease. The sequence of disease progression was re-constructed by a novel clinical outcome scale (NPC-cdb score). RESULTS: The efficiency of current clinical diagnostic standards negatively correlates with duration of disease (p<3.9x10(-4)), suggesting insufficient sensitivity in patients early in the disease process. Neurological signs considered as typical for NP-C were frequent (e.g., cognitive impairment 86%, ataxia 79%, vertical supranuclear gaze palsy 76%) and their presence co-occurred with accelerated diagnosis. However, less specific neuropsychiatric signs were reported to arise considerably more early in the disease process (e.g., clumsiness -4.9±1.1 y before diagnosis). Most patients showed a steady disease progression that correlated with age at neurological onset. However, a distinct subcohort (n=6) with initially steadily progressing disease later showed a 2.9-fold accelerated progression that was associated with the onset of seizures (p<7x10(-4)), suggesting seizures as predictive for a poor prognosis. CONCLUSIONS: Considering early, but less specific neuropsychiatric signs may accelerate the path to diagnosing NP-C in a patient

    Plasma neurofilament light, glial fibrillary acidic protein and lysosphingolipid biomarkers for pharmacodynamics and disease monitoring of GM2 and GM1 gangliosidoses patients

    Get PDF
    GM2 and GM1 gangliosidoses are genetic, neurodegenerative lysosomal sphingolipid storage disorders. The earlier the age of onset, the more severe the clinical presentation and progression, with infantile, juvenile and late-onset presentations broadly delineated into separate phenotypic subtypes. Gene and substrate reduction therapies, both of which act directly on sphingolipidosis are entering clinical trials for treatment of these disorders. Simple to use biomarkers for disease monitoring are urgently required to support and expedite these clinical trials. Here, lysosphingolipid and protein biomarkers of sphingolipidosis and neuropathology respectively, were assessed in plasma samples from 33 GM2 gangliosidosis patients, 13 GM1 gangliosidosis patients, and compared to 66 controls. LysoGM2 and lysoGM1 were detectable in 31/33 GM2 gangliosidosis and 12/13 GM1 gangliosidosis patient samples respectively, but not in any controls. Levels of the axonal damage marker Neurofilament light (NF-L) were highly elevated in both GM2 and GM1 gangliosidosis patient plasma samples, with no overlap with controls. Levels of the astrocytosis biomarker Glial fibrillary acidic protein (GFAP) were also elevated in samples from both patient populations, albeit with some overlap with controls. In GM2 gangliosidosis patient plasma NF-L, Tau, GFAP and lysoGM2 were all most highly elevated in infantile onset patients, indicating a relationship to severity and phenotype. Plasma NF-L and liver lysoGM2 were also elevated in a GM2 gangliosidosis mouse model, and were lowered by treatment with a drug that slowed disease progression. These results indicate that lysosphingolipids and NF-L/GFAP have potential to monitor pharmacodynamics and pathogenic processes respectively in GM2 and GM1 gangliosidoses patients

    A cross‐sectional, prospective ocular motor study in 72 patients with Niemann‐Pick disease type C

    Get PDF
    Objective: To characterize ocular motor function in patients with Niemann-Pick disease type C (NPC). Methods: In a multicontinental, cross-sectional study we characterized ocular-motor function in 72 patients from 12 countries by video-oculography. Interlinking with disease severity, we also searched for ocular motor biomarkers. Our study protocol comprised reflexive and self-paced saccades, smooth pursuit, and gaze-holding in horizontal and vertical planes. Data were compared with those of 158 healthy controls (HC). Results: Some 98.2% of patients generated vertical saccades below the 95% CI of the controls' peak velocity. Only 46.9% of patients had smooth pursuit gain lower than that of 95% CI of HC. The involvement in both downward and upward directions was similar (51°/s (68.9, [32.7-69.3]) downward versus 78.8°/s (65.9, [60.8-96.8]) upward). Horizontal saccadic peak velocity and latency, vertical saccadic duration and amplitude, and horizontal position smooth pursuit correlated best to disease severity. Compensating strategies such as blinks to elicit saccades, and head and upper body movements to overcome the gaze palsy, were observed. Vertical reflexive saccades were more impaired and slower than self-paced ones. Gaze-holding was normal. Ocular-motor performance depended on the age of onset and disease duration. Conclusions: This is the largest cohort of NPC patients investigated for ocular-motor function. Vertical supranuclear saccade palsy is the hallmark of NPC. Vertical upward and downward saccades are equally impaired. Horizontal saccadic peak velocity and latency, vertical saccadic duration and amplitude, and horizontal position smooth pursuit can be used as surrogate parameters for clinical trials. Compensating strategies can contribute to establishing a diagnosis

    Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker

    Get PDF
    Lysosomal storage disorders (LSDs) occur at a frequency of 1 in every 5,000 live births and are a common cause of pediatric neurodegenerative disease. The relatively small number of patients with LSDs and lack of validated biomarkers are substantial challenges for clinical trial design. Here, we evaluated the use of a commercially available fluorescent probe, Lysotracker, that can be used to measure the relative acidic compartment volume of circulating B cells as a potentially universal biomarker for LSDs. We validated this metric in a mouse model of the LSD Niemann-Pick type C1 disease (NPC1) and in a prospective 5-year international study of NPC patients. Pediatric NPC subjects had elevated acidic compartment volume that correlated with age-adjusted clinical severity and was reduced in response to therapy with miglustat, a European Medicines Agency–approved drug that has been shown to reduce NPC1-associated neuropathology. Measurement of relative acidic compartment volume was also useful for monitoring therapeutic responses of an NPC2 patient after bone marrow transplantation. Furthermore, this metric identified a potential adverse event in NPC1 patients receiving i.v. cyclodextrin therapy. Our data indicate that relative acidic compartment volume may be a useful biomarker to aid diagnosis, clinical monitoring, and evaluation of therapeutic responses in patients with lysosomal disorders

    Retinal and optic nerve degeneration in α-mannosidosis

    No full text
    Abstract Background α-mannosidosis is a rare, autosomal-recessive, lysosomal storage disease caused by a deficient activity of α-mannosidase. Typical symptoms include intellectual, motor and hearing impairment, facial coarsening, and musculoskeletal abnormalities. Ocular pathologies reported previously were mainly opacities of the cornea and lens, strabismus, and ocular motility disorders. However, retinal and optic nerve degeneration have been rarely described. Methods We report ocular findings of 32 patients with α-mannosidosis. We particularly concentrated on retinal abnormalities which we supported by posterior segment examination, fundus photography, and Spectral-Domain optical coherence tomography (SD-OCT) imaging. Results Tapeto-retinal degeneration with bone spicule formations in the peripheral retina or macular changes were seen in three patients (9.4%) on funduscopy; of these, two with optic nerve atrophy. Eight retinal images could be obtained by OCT or fundus photography; of these, six showed thinning of the outer retinal layers on OCT. Overall, optic nerve atrophy was seen in six patients (18.8%); of these, four with partial atrophy. Two patients had partial optic nerve atrophy with no retinal abnormalities on funduscopy. Cataract was seen in two (6.3%), corneal haze also in two patients (6.3%). Six patients (18.8%) had manifest strabismus, four (12.5%) nystagmus, and in five patients (15.6%) impaired smooth pursuit eye movements were seen. Conclusion Ocular pathologies are not exclusively confined to opacities of the cornea and lens or strabismus and ocular motility disorders but tapeto-retinal degeneration and optic nerve atrophy may be a common feature in α-mannosidosis. OCT technology helps detecting early outer retinal thinning which can progress with age and potentially leads to vision loss over time

    Plasma lysosphingomyelin demonstrates great potential as a diagnostic biomarker for Niemann-Pick disease type C in a retrospective study.

    No full text
    Niemann-Pick disease type C (NP-C) is a devastating, neurovisceral lysosomal storage disorder which is characterised by variable manifestation of visceral signs, progressive neuropsychiatric deterioration and premature death, caused by mutations in the NPC1 and NPC2 genes. Due to the complexity of diagnosis and the availability of an approved therapy in the EU, improved detection of NP-C may have a huge impact on future disease management. At the cellular level dysfunction or deficiency of either the NPC1 or NPC2 protein leads to a complex intracellular endosomal/lysosomal trafficking defect, and organ specific patterns of sphingolipid accumulation. Lysosphingolipids have been shown to be excellent biomarkers of sphingolipidosis in several enzyme deficient lysosomal storage disorders. Additionally, in a recent study the lysosphingolipids, lysosphingomyelin (SPC) and glucosylsphingosine (GlcSph), appeared to be elevated in the plasma of three adult NP-C patients. In order to investigate the clinical utility of SPC and GlcSph as diagnostic markers, an in-depth fit for purpose biomarker assay validation for measurement of these biomarkers in plasma by liquid chromatography-tandem mass spectrometry was performed. Plasma SPC and GlcSph are stable and can be measured accurately, precisely and reproducibly. In a retrospective analysis of 57 NP-C patients and 70 control subjects, median plasma SPC and GlcSph were significantly elevated in NP-C by 2.8-fold and 1.4-fold respectively. For miglustat-naïve NP-C patients, aged 2-50 years, the area under the ROC curve was 0.999 for SPC and 0.776 for GlcSph. Plasma GlcSph did not correlate with SPC levels in NP-C patients. The data indicate excellent potential for the use of lysosphingomyelin in NP-C diagnosis, where it could be used to identify NP-C patients for confirmatory genetic testing

    Alpha-mannosidosis: Correlation between phenotype, genotype and mutant MAN2B1 subcellular localisation Inherited metabolic diseases

    Get PDF
    License: Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)Background: Alpha-mannosidosis is caused by mutations in MAN2B1, leading to loss of lysosomal alpha-mannosidase activity. Symptoms include intellectual disabilities, hearing impairment, motor function disturbances, facial coarsening and musculoskeletal abnormalities. Methods: To study the genotype-phenotype relationship for alpha-mannosidosis 66 patients were included. Based on the predicted effect of the mutations and the subcellular localisation of mutant MAN2B1 in cultured cells, the patients were divided into three subgroups. Clinical and biochemical data were collected. Correlation analyses between each of the three subgroups of genotype/ subcellular localisation and the clinical and biochemical data were done to investigate the potential relationship between genotype and phenotype in alpha-mannosidosis. Statistical analyses were performed using the SPSS software. Analyses of covariance were performed to describe the genotype-phenotype correlations. The phenotype parameters were modelled by the mutation group and age as a covariate. P values of <0.05 were considered as statistically significant. Results: Complete MAN2B1 genotypes were established for all patients. We found significantly higher scores in the Leiter-R test, lower concentrations of CSF-oligosaccharides, higher point scores in the Bruininks-Oseretsky Test of Motor Proficiency subtests (BOT-2); Upper limb coordination and Balance, and a higher FVC% in patients in subgroup 3, harbouring at least one variant that allows localisation of the mutant MAN2B1 protein to the lysosomes compared to subgrou 2 and/or subgroup 1 with no lysosomal localization of the mutant MAN2B1 protein. Conclusion: Our results indicate a correlation between the MAN2B1 genotypes and the cognitive function, upper limb coordination, balance, FVC% and the storage of oligosaccharides in CSF. This correlation depends on the subcellular localisation of the mutant MAN2B1 protein
    corecore