4,285 research outputs found

    The Compact Group of Galaxies HCG 31 is in an early phase of merging

    Full text link
    We have obtained high spectral resolution (R = 45900) Fabry-Perot velocity maps of the Hickson Compact Group HCG 31 in order to revisit the important problem of the merger nature of the central object A+C and to derive the internal kinematics of the candidate tidal dwarf galaxies in this group. Our main findings are: (1) double kinematic components are present throughout the main body of A+C, which strongly suggests that this complex is an ongoing merger (2) regions A2A2 and E, to the east and south of complex A+C, present rotation patterns with velocity amplitudes of 25kms1\sim 25 km s^{-1} and they counterrotate with respect to A+C, (3) region F, which was previously thought to be the best example of a tidal dwarf galaxy in HCG 31, presents no rotation and negligible internal velocity dispersion, as is also the case for region A1A1. HCG 31 presents an undergoing merger in its center (A+C) and it is likely that it has suffered additional perturbations due to interactions with the nearby galaxies B, G and Q.Comment: 5 pages + figures - Accepted to ApJ Lette

    2D kinematics of the edge-on spiral galaxy ESO 379-G006

    Full text link
    We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.Comment: 61 pages, 15 figures. Accepted for publication in A

    Integral field spectroscopy with SINFONI of VVDS galaxies. II. The mass-metallicity relation at 1.2 < z < 1.6

    Full text link
    This work aims to provide a first insight into the mass-metallicity (MZ) relation of star-forming galaxies at redshift z~1.4. To reach this goal, we present a first set of nine VVDS galaxies observed with the NIR integral-field spectrograph SINFONI on the VLT. Oxygen abundances are derived from empirical indicators based on the ratio between strong nebular emission-lines (Halpha, [NII]6584 and [SII]6717,6731). Stellar masses are deduced from SED fitting with Charlot & Bruzual (2007) population synthesis models, and star formation rates are derived from [OII]3727 and Halpha emission-line luminosities. We find a typical shift of 0.2-0.4 dex towards lower metallicities for the z~1.4 galaxies, compared to the MZ-relation in the local universe as derived from SDSS data. However, this small sample of eight galaxies does not show any clear correlation between stellar mass and metallicity, unlike other larger samples at different redshift (z~0, z~0.7, and z~2). Indeed, our galaxies lie just under the relation at z~2 and show a small trend for more massive galaxies to be more metallic (~0.1 logarithmic slope). There are two possible explanations to account for these observations. First, the most massive galaxies present higher specific star formation rates when compared to the global VVDS sample which could explain the particularly low metallicity of these galaxies as already shown in the SDSS sample. Second, inflow of metal-poor gas due to tidal interactions could also explain the low metallicity of these galaxies as two of these three galaxies show clear signatures of merging in their velocity fields. Finally, we find that the metallicity of 4 galaxies is lower by ~0.2 to 0.4 dex if we take into account the N/O abundance ratio in their metallicity estimate.Comment: 7 pages, 4 figures, accepted in A&A Comments: Comments: more accurate results with better stellar mass estimate

    Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    Full text link
    We present high-resolution (R ~ 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10^5 - 10^7 M_sun for a Kroupa IMF) and their spectra are characterized by broad, extended Br-gamma emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Brgamma lines of most ELCs have supersonic widths (60-110 km/s FWHM) and non-Gaussian wings whose velocities exceed the clusters' escape velocities. This high-velocity unbound gas is flowing out in winds that are powered by the clusters' massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.Comment: Accepted to Ap

    GIRAFFE multiple integral field units at VLT: a unique tool to recover velocity fields of distant galaxies

    Full text link
    The GIRAFFE spectrograph is unique in providing the integral field spectroscopy of fifteen distant galaxies at the same time. It has been successfully implemented at the second VLT unit within the FLAMES facility. We present GIRAFFE observations acquired during the Guaranteed Time Observation of the Paris Observatory, using total exposure times ranging from 6 to 12 hours. The reduced 3D cube of each galaxy has been deconvolved using our new package DisGal3D. This software has been written using the only assumption that UV light traces the emission line regions. The comparison between GIRAFFE spectra and HST imagery allows us to recover details on velocity fields as small as 0.3-0.4 arcsec. It has been successfully tested using Fabry Perot observations of nearby galaxies purposely redshifted to large distances. We present here preliminary results for three distant galaxies at 0.45< z < 0.65, whose velocity fields have been derived with exquisite spectral (R=10000) and spatial resolutions. Observed velocity fields range from disturbed fields expected in major merger events to those of regular spiral with minor perturbations. For the latter, one could accurately derive the dynamical major axis and the maximal rotational velocity. We conclude that dynamical properties of a large number of distant galaxies can be routinely derived at VLT. This opens a new avenue towards the understanding of the galaxy formation and evolution during the last 8 Gyr.Comment: 4 pages, 3 jpeg figures. to appear in A&

    Signatures of Galaxy-Cluster Interactions: Spiral Galaxy Rotation Curve Asymmetry, Shape, and Extent

    Get PDF
    The environmental dependencies of the characteristics of spiral galaxy rotation curves are studied in this work. We use our large, homogeneously collected sample of 510 cluster spiral galaxy rotation curves to test the claim that the shape of a galaxy's rotation curve strongly depends on its location within the cluster, and thus presumably on the strength of the local intracluster medium and on the frequency and strength of tidal interactions with the cluster and cluster galaxies. Our data do not corroborate such a scenario, consistent with the fact that Tully-Fisher residuals are independent of galaxy location within the cluster; while the average late-type spiral galaxy shows more rise in the outer parts of its rotation curve than does the typical early-type spiral galaxy, there is no apparent trend for either subset with cluster environment. We also investigate as a function of cluster environment rotation curve asymmetry and the radial distribution of H II region tracers within galactic disks. Mild trends with projected cluster-centric distance are observed: (i) the (normalized) radial extent of optical line emission averaged over all spiral galaxy types shows a 4%+/-2% increase per Mpc of galaxy-cluster core separation, and (ii) rotation curve asymmetry falls by a factor of two between the inner and outer cluster for early-type spirals (a negligible decrease is found for late-type spirals). Such trends are consistent with spiral disk perturbations or even the stripping of the diffuse, outermost gaseous regions within the disks as galaxies pass through the dense cluster cores.Comment: 17 pages; to appear in the April 2001 Astronomical Journa

    Reachability problems for PAMs

    Get PDF
    Piecewise affine maps (PAMs) are frequently used as a reference model to show the openness of the reachability questions in other systems. The reachability problem for one-dimentional PAM is still open even if we define it with only two intervals. As the main contribution of this paper we introduce new techniques for solving reachability problems based on p-adic norms and weights as well as showing decidability for two classes of maps. Then we show the connections between topological properties for PAM's orbits, reachability problems and representation of numbers in a rational base system. Finally we show a particular instance where the uniform distribution of the original orbit may not remain uniform or even dense after making regular shifts and taking a fractional part in that sequence.Comment: 16 page
    corecore