Piecewise affine maps (PAMs) are frequently used as a reference model to show
the openness of the reachability questions in other systems. The reachability
problem for one-dimentional PAM is still open even if we define it with only
two intervals. As the main contribution of this paper we introduce new
techniques for solving reachability problems based on p-adic norms and weights
as well as showing decidability for two classes of maps. Then we show the
connections between topological properties for PAM's orbits, reachability
problems and representation of numbers in a rational base system. Finally we
show a particular instance where the uniform distribution of the original orbit
may not remain uniform or even dense after making regular shifts and taking a
fractional part in that sequence.Comment: 16 page