44 research outputs found

    Sensitivity of outcome instruments in a priori selected patient groups after traumatic brain injury:Results from the CENTER-TBI study

    Get PDF
    Traumatic brain injury (TBI) can negatively impact patients' lives on many dimensions. Multiple instruments are available for evaluating TBI outcomes, but it is still unclear which instruments are the most sensitive for that purpose. This study examines the sensitivity of nine outcome instruments in terms of their ability to discriminate within and between specific patient groups, selected a priori as identified from the literature, at three different time points within a year after TBI (i.e., 3, 6, and 12 months post injury). The sensitivity of the instruments to sociodemographic (sex, age, education), premorbid (psychological health status), and injury-related (clinical care pathways, TBI and extracranial injury severity) factors was assessed by means of cross-sectional multivariate Wei-Lachin analyses. The Glasgow Outcome Scale Extended (GOSE)-the standard in the field of TBI for measuring functional recovery-demonstrated the highest sensitivity in most group comparisons. However, as single functional scale, it may not be able to reflect the multidimensional nature of the outcome. Therefore, the GOSE was used as a reference for further sensitivity analyses on more specific outcome scales, addressing further potential deficits following TBI. The physical component summary score (PCS) of the generic health-related quality of life (HRQOL) instruments (SF-36v2/-12v2) and the TBI-specific HRQOL instruments (QOLIBRI/-OS) were most sensitive in distinguishing recovery after TBI across all time points and patient groups, followed by the RPQ assessing post-concussion symptoms and the PHQ-9 measuring depression. The SF-36v2/-12v2 mental component summary score and the GAD-7 measuring anxiety were less sensitive in several group comparisons. The assessment of the functional recovery status combined with generic HRQOL (the PCS of the SF-12v2), disease-specific HRQOL (QOLIBRI-OS), and post-concussion symptoms (RPQ) can provide a sensitive, comprehensive, yet time-efficient evaluation of the health status of individuals after TBI in different patient groups.</p

    Reference Values of the QOLIBRI from General Population Samples in the United Kingdom and The Netherlands

    Get PDF
    The Quality of Life after Traumatic Brain Injury (QOLIBRI) instrument is an internationally validated patient-reported outcome measure for assessing disease-specific health-related quality of life (HRQoL) in individuals after traumatic brain injury (TBI). However, no reference values for general populations are available yet for use in clinical practice and research in the field of TBI. The aim of the present study was, therefore, to establish these reference values for the United Kingdom (UK) and the Netherlands (NL). For this purpose, an online survey with a reworded version of the QOLIBRI for general populations was used to collect data on 4403 individuals in the UK and 3399 in the NL. This QOLIBRI version was validated by inspecting descriptive statistics, psychometric criteria, and comparability of the translations to the original version. In particular, measurement invariance (MI) was tested to examine whether the items of the instrument were understood in the same way by different individuals in the general population samples and in the TBI sample across the two countries, which is necessary in order to establish reference values. In the general population samples, the reworded QOLIBRI displayed good psychometric properties, including MI across countries and in the non-TBI and TBI samples. Therefore, differences in the QOLIBRI scores can be attributed to real differences in HRQoL. Individuals with and without a chronic health condition did differ significantly, with the latter reporting lower HRQoL. In conclusion, we provided reference values for healthy individuals and individuals with at least one chronic condition from general population samples in the UK and the NL. These can be used in the interpretation of disease-specific HRQoL assessments after TBI applying the QOLIBRI on the individual level in clinical as well as research contexts

    Outcomes after Complicated and Uncomplicated Mild Traumatic Brain Injury at Three- and Six-Months Post-Injury: Results from the CENTER-TBI Study

    Get PDF
    The objective of this study was to provide a comprehensive examination of the relation of complicated and uncomplicated mild traumatic brain injury (mTBI) with multidimensional outcomes at three- and six-months after TBI. We analyzed data from the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) research project. Patients after mTBI (Glasgow Coma scale (GCS) score of 13–15) enrolled in the study were differentiated into two groups based on computed tomography (CT) findings: complicated mTBI (presence of any traumatic intracranial injury on first CT) and uncomplicated mTBI (absence of any traumatic intracranial injury on first CT). Multidimensional outcomes were assessed using seven instruments measuring generic and disease-specific health-related quality of life (HRQoL) (SF-36 and QOLIBRI), functional outcome (GOSE), and psycho-social domains including symptoms of post-traumatic stress disorder (PTSD) (PCL-5), depression (PHQ-9), and anxiety (GAD-7). Data were analyzed using a multivariate repeated measures approach (MANOVA-RM), which inspected mTBI groups at three- and six-months post injury. Patients after complicated mTBI had significantly lower GOSE scores, reported lower physical and mental component summary scores based on the SF-36 version 2, and showed significantly lower HRQoL measured by QOLIBRI compared to those after uncomplicated mTBI. There was no difference between mTBI groups when looking at psychological outcomes, however, a slight improvement in PTSD symptoms and depression was observed for the entire sample from three to six months. Patients after complicated mTBI reported lower generic and disease specific HRQoL and worse functional outcome compared to individuals after uncomplicated mTBI at three and six months. Both groups showed a tendency to improve from three to six months after TBI. The complicated mTBI group included more patients with an impaired long-term outcome than the uncomplicated group. Nevertheless, patients, clinicians, researchers, and decisions-makers in health care should take account of the short and long-term impact on outcome for patients after both uncomplicated and complicated mTBI

    Psychometric Characteristics of the Patient-Reported Outcome Measures Applied in the CENTER-TBI Study.

    Get PDF
    Traumatic brain injury (TBI) may lead to impairments in various outcome domains. Since most instruments assessing these are only available in a limited number of languages, psychometrically validated translations are important for research and clinical practice. Thus, our aim was to investigate the psychometric properties of the patient-reported outcome measures (PROM) applied in the CENTER-TBI study. The study sample comprised individuals who filled in the six-months assessments (GAD-7, PHQ-9, PCL-5, RPQ, QOLIBRI/-OS, SF-36v2/-12v2). Classical psychometric characteristics were investigated and compared with those of the original English versions. The reliability was satisfactory to excellent; the instruments were comparable to each other and to the original versions. Validity analyses demonstrated medium to high correlations with well-established measures. The original factor structure was replicated by all the translations, except for the RPQ, SF-36v2/-12v2 and some language samples for the PCL-5, most probably due to the factor structure of the original instruments. The translation of one to two items of the PHQ-9, RPQ, PCL-5, and QOLIBRI in three languages could be improved in the future to enhance scoring and application at the individual level. Researchers and clinicians now have access to reliable and valid instruments to improve outcome assessment after TBI in national and international health care

    Understanding the relationship between cognitive performance and function in daily life after traumatic brain injury

    Get PDF
    Objective Cognitive impairment is a key cause of disability after traumatic brain injury (TBI) but relationships with overall functioning in daily life are often modest. The aim is to examine cognition at different levels of function and identify domains associated with disability. Methods 1554 patients with mild-to-severe TBI were assessed at 6 months post injury on the Glasgow Outcome Scale-Extended (GOSE), the Short Form-12v2 and a battery of cognitive tests. Outcomes across GOSE categories were compared using analysis of covariance adjusting for age, sex and education. Results Overall effect sizes were small to medium, and greatest for tests involving processing speed (eta(2)(p) 0.057-0.067) and learning and memory (eta(2)(p) 0.048-0.052). Deficits in cognitive performance were particularly evident in patients who were dependent (GOSE 3 or 4) or who were unable to participate in one or more major life activities (GOSE 5). At higher levels of function (GOSE 6-8), cognitive performance was surprisingly similar across categories. There were decreases in performance even in patients reporting complete recovery without significant symptoms. Medium to large effect sizes were present for summary measures of cognition (eta(2)(p) 0.111), mental health (eta(2)(p) 0.131) and physical health (eta(2)(p) 0.252). Conclusions This large-scale study provides novel insights into cognitive performance at different levels of disability and highlights the importance of processing speed in function in daily life. At upper levels of outcome, any influence of cognition on overall function is markedly attenuated and differences in mental health are salient.Peer reviewe

    Assessment of Health-Related Quality of Life after TBI: Comparison of a Disease-Specific (QOLIBRI) with a Generic (SF-36) Instrument

    Get PDF
    Psychosocial, emotional, and physical problems can emerge after traumatic brain njury (TBI), potentially impacting health-related quality of life (HRQoL). Until now, however, neither the discriminatory power of disease-specific (QOLIBRI) and generic (SF-36) HRQoL nor their correlates have been compared in detail. These aspects as well as some psychometric item characteristics were studied in a sample of 795 TBI survivors. The Shannon H耠 index absolute informativity, as an indicator of an instrument’s power to differentiate between individualswithin a specific group or health state,was investigated. Psychometric performance of the two instruments was predominantly good, generally higher, and more homogenous for the QOLIBRI than for the SF-36 subscales. Notably, the SF-36 “Role Physical,” “Role Emotional,” and “Social Functioning” subscales showed less satisfactory discriminatory power than all other dimensions or the sum scores of both instruments. The absolute informativity of disease-specific as well as generic HRQoL instruments concerning the different groups defined by different correlates differed significantly.When the focus is on how a certain subscale or sum score differentiates between individuals in one specific dimension/health state, the QOLIBRI can be recommended as the preferable instrument.Psychosocial, emotional, and physical problems can emerge after traumatic brain injury (TBI), potentially impacting health-related quality of life (HRQoL). Until now, however, neither the discriminatory power of disease-specific (QOLIBRI) and generic (SF-36) HRQoL nor their correlates have been compared in detail. These aspects as well as some psychometric item characteristics were studied in a sample of 795 TBI survivors. The Shannon H耠 index absolute informativity, as an indicator of an instrument’s power to differentiate between individualswithin a specific group or health state,was investigated. Psychometric performance of the two instruments was predominantly good, generally higher, and more homogenous for the QOLIBRI than for the SF-36 subscales. Notably, the SF-36 “Role Physical,” “Role Emotional,” and “Social Functioning” subscales showed less satisfactory discriminatory power than all other dimensions or the sum scores of both instruments. The absolute informativity of disease-specific as well as generic HRQoL instruments concerning the different groups defined by different correlates differed significantly.When the focus is on how a certain subscale or sum score differentiates between individuals in one specific dimension/health state, the QOLIBRI can be recommended as the preferable instrument.Peer reviewe

    Longitudinal Analyses of the Reciprocity of Depression and Anxiety after Traumatic Brain Injury and Its Clinical Implications.

    Get PDF
    Depression and anxiety are common following traumatic brain injury (TBI). Understanding their prevalence and interplay within the first year after TBI with differing severities may improve patients' outcomes after TBI. Individuals with a clinical diagnosis of TBI recruited for the large European collaborative longitudinal study CENTER-TBI were screened for patient-reported major depression (MD) and generalized anxiety disorder (GAD) at three, six, and twelve months post-injury (N = 1683). Data were analyzed using autoregressive cross-lagged models. Sociodemographic, premorbid and injury-related factors were examined as risk factors. 14.1-15.5% of TBI patients reported moderate to severe MD at three to twelve months after TBI, 7.9-9.5% reported GAD. Depression and anxiety after TBI presented high within-domain persistency and cross-domain concurrent associations. MD at three months post-TBI had a significant impact on GAD at six months post-TBI, while both acted bidirectionally at six to twelve months post-TBI. Being more severely disabled, having experienced major extracranial injuries, an intensive care unit stay, and being female were risk factors for more severe MD and GAD. Major trauma and the level of consciousness after TBI were additionally associated with more severe MD, whereas being younger was related to more severe GAD. Individuals after TBI should be screened and treated for MD and GAD early on, as both psychiatric disturbances are highly persistent and bi-directional in their impact. More severely disabled patients are particularly vulnerable, and thus warrant timely screening and intensive follow-up treatment

    Understanding the relationship between cognitive performance and function in daily life after traumatic brain injury.

    Get PDF
    OBJECTIVE: Cognitive impairment is a key cause of disability after traumatic brain injury (TBI) but relationships with overall functioning in daily life are often modest. The aim is to examine cognition at different levels of function and identify domains associated with disability. METHODS: 1554 patients with mild-to-severe TBI were assessed at 6 months post injury on the Glasgow Outcome Scale-Extended (GOSE), the Short Form-12v2 and a battery of cognitive tests. Outcomes across GOSE categories were compared using analysis of covariance adjusting for age, sex and education. RESULTS: Overall effect sizes were small to medium, and greatest for tests involving processing speed (ηp 2 0.057-0.067) and learning and memory (ηp 2 0.048-0.052). Deficits in cognitive performance were particularly evident in patients who were dependent (GOSE 3 or 4) or who were unable to participate in one or more major life activities (GOSE 5). At higher levels of function (GOSE 6-8), cognitive performance was surprisingly similar across categories. There were decreases in performance even in patients reporting complete recovery without significant symptoms. Medium to large effect sizes were present for summary measures of cognition (ηp 2 0.111), mental health (ηp 2 0.131) and physical health (ηp 2 0.252). CONCLUSIONS: This large-scale study provides novel insights into cognitive performance at different levels of disability and highlights the importance of processing speed in function in daily life. At upper levels of outcome, any influence of cognition on overall function is markedly attenuated and differences in mental health are salient

    Translation and Linguistic Validation of Outcome Instruments for Traumatic Brain Injury Research and Clinical Practice: A Step-by-Step Approach within the Observational CENTER-TBI Study.

    Get PDF
    Assessing outcomes in multinational studies on traumatic brain injury (TBI) poses major challenges and requires relevant instruments in languages other than English. Of the 19 outcome instruments selected for use in the observational Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, 17 measures lacked translations in at least one target language. To fill this gap, we aimed to develop well-translated linguistically and psychometrically validated instruments. We performed translations and linguistic validations of patient-reported measures (PROMs), clinician-reported (ClinRO), and performance-based (PerfO) outcome instruments, using forward and backward translations, reconciliations, cognitive debriefings with up to 10 participants, iterative revisions, and international harmonization with input from over 150 international collaborators. In total, 237 translations and 211 linguistic validations were carried out in up to 20 languages. Translations were evaluated at the linguistic and cultural level by coding changes when the original versions are compared with subsequent translation steps, using the output of cognitive debriefings, and using comprehension rates. The average comprehension rate per instrument varied from 88% to 98%, indicating a good quality of the translations. These outcome instruments provide a solid basis for future TBI research and clinical practice and allow the aggregation and analysis of data across different countries and languages

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations
    corecore