32 research outputs found

    The expression levels of prolyl oligopeptidase responds not only to neuroinflammation but also to systemic inflammation upon liver failure in rat models and cirrhotic patients

    Get PDF
    Abstract Background Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation. Methods PREP enzymatic activity and protein levels measured with immunological techniques were determined in the brain and plasma of rats with portacaval shunt (PCS) and after treatment with ibuprofen. Those results were compared with the levels of PREP measured in plasma from cirrhotic patients with or without minimal hepatic encephalopathy (MHE). Levels of several pro-inflammatory cytokines and those of NO/cGMP homeostasis metabolites were measured in PCS rats and cirrhotic patients to conclude on the role of PREP in inflammation. Results In PCA rats, we found that PREP levels are significantly increased in the hippocampus, striatum and cerebellum, that in the cerebellum the PREP increase was significantly found in the extracellular space and that the levels were restored to those measured in control rats after administration of an anti-inflammatory agent, ibuprofen. In cirrhotic patients, circulatory PREP activity was found to correlate to systemic and neuroinflammatory markers and had a negative correlation with the severity of the disease, although no clear relation to MHE. Conclusions These results support the idea that PREP levels could be used as indicators of cirrhosis severity in humans, and using other markers, it might contribute to assessing the level of neuroinflammation in those patients. This work reports, for the first time, that PREP is secreted to the extracellular space in the cerebellum most probably due to glial activation and supports the role of the peptidase in the inflammatory response

    Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests

    Get PDF
    AIM: To assess whether non invasive blood flow measurement by arterial spin labeling in several brain regions detects minimal hepatic encephalopathy.METHODS: Blood flow (BF) was analyzed by arterial spin labeling (ASL) in different brain areas of 14 controls, 24 cirrhotic patients without and 16 cirrhotic patients with minimal hepatic encephalopathy (MHE). Images were collected using a 3 Tesla MR scanner (Achieva 3T-TX, Philips, Netherlands). Pulsed ASL was performed. Patients showing MHE were detected using the battery Psychometric Hepatic Encephalopathy Score (PHES) consisting of five tests. Different cognitive and motor functions were also assessed: alterations in selective attention were evaluated using the Stroop test. Patients and controls also performed visuo-motor and bimanual coordination tests. Several biochemical parameters were measured: serum pro-inflammatory interleukins (IL-6 and IL-18), 3-nitrotyrosine, cGMP and nitrates+nitrites in plasma, and blood ammonia. Bivariate correlations were evaluated.RESULTS: In patients with MHE, BF was increased in cerebellar hemisphere (P = 0.03) and vermis (P = 0.012) and reduced in occipital lobe (P = 0.017). BF in cerebellar hemisphere was also increased in patients without MHE (P = 0.02). Bimanual coordination was impaired in patients without MHE (P = 0.05) and much more in patients with MHE (P < 0.0001). Visuo-motor coordination was impaired only in patients with MHE (P < 0.0001). Attention was slightly affected in patients without MHE and more strongly in patients with MHE (P < 0.0001). BF in cerebellar hemisphere and vermis correlated with performance in most tests of PHES [(number connection tests A (NCT-A), B (NCT-B)and line tracing test] and in the congruent task of Stroop test. BF in frontal lobe correlated with NCT-A. Performance in bimanual and visuomotor coordination tests correlated only with BF in cerebellar hemisphere. BF in occipital lobe correlates with performance in the PHES battery and with CFF. BF in cerebellar hemisphere correlates with plasma cGMP and nitric oxide (NO) metabolites. BF in vermis cerebellar also correlates with NO metabolites and with 3-nitrotyrosine. IL-18 in plasma correlates with BF in thalamus and occipital lobe.CONCLUSION: Non invasive BF determination in cerebellum using ASL may detect MHE earlier than the PHES. Altered NO-cGMP pathway seems to be associated to altered BF in cerebellum

    Learning and Memory Impairments in Patients with Minimal Hepatic Encephalopathy are Associated with Structural and Functional Connectivity Alterations in Hippocampus

    Get PDF
    Patients with minimal hepatic encephalopathy (MHE) show mild cognitive impairment associated with alterations in attentional and executive networks. There are no studies evaluating the relationship between memory in MHE and structural and functional connectivity (FC) changes in the hippocampal system. This study aimed to evaluate verbal learning and long-term memory in cirrhotic patients with (C-MHE) and without MHE (C-NMHE) and healthy controls. We assessed the relationship between alterations in memory and the structural integrity and FC of the hippocampal system. C-MHE patients showed impairments in learning, long-term memory, and recognition, compared to C-NMHE patients and controls. Cirrhotic patients showed reduced fimbria volume compared to controls. Larger volumes in hippocampus subfields were related to better memory performance in C-NMHE patients and controls. C-MHE patients presented lower FC between the L-presubiculum and L-precuneus than C-NMHE patients. Compared to controls, C-MHE patients had reduced FC between L-presubiculum and subiculum seeds and bilateral precuneus, which correlated with cognitive impairment and memory performance. Alterations in the FC of the hippocampal system could contribute to learning and long-term memory impairments in C-MHE patients. This study demonstrates the association between alterations in learning and long-term memory and structural and FC disturbances in hippocampal structures in cirrhotic patients

    Motor and Cognitive Performance in Patients with Liver Cirrhosis with Minimal Hepatic Encephalopathy

    Get PDF
    Minimal hepatic encephalopathy (MHE) is associated with mild cognitive impairment and frailty. This study aims to identify cognitive and motor differences in cirrhotic patients with and without MHE, and the correlations between motor signs and cognitive performance. Gait, balance, hand strength and motor speed performance were evaluated in 66 cirrhotic patients (38 without and 28 with MHE, according to the Psychometric Hepatic Encephalopathy Score (PHES). Cognitive performance was measured with the Mini-Mental State Examination, Verbal Fluency Test, Aprendizaje Verbal España-Complutense Test (TAVEC), Wechsler Adult Intelligence Scale III, Hamilton Depression and Anxiety Rating Scale and Functioning Assessment Short Test (FAST). MHE patients performed worse than patients without MHE in cognitive and autonomous functioning, learning and long-term memory, and verbal fluency. The same pattern was found in gait, center of pressure movement, variability of hand strength performance and hand motor speed. In MHE patients, high correlations were found between balance and FAST test, gait velocity and verbal skills, hand strength variability and anxiety and depression, and motor speed and FAST and TAVEC. MHE patients showed worse motor and cognitive performance than patients without MHE. MHE patients could have impaired movement control expressed as bradykinesia, and this reduced motor performance could correlate with cognitive performance

    A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data

    Get PDF
    [EN] T-cell receptor (TCR) analysis is relevant for the study of immune system diseases. The expression of TCRs is usually measured with targeted sequencing approaches where TCR genes are selectively amplified. However, many non-targeted RNA-seq experiments also contain reads of TCR genes, which could be leveraged for TCR expression analysis while reducing sample requirements and costs. Moreover, a step-by-step pipeline for the processing of transcriptome RNA-seq reads to deliver immune repertoire data is missing, and these types of analyses are usually not included in RNA-seq studies of immunological conditions. This represents a missed opportunity for complementing them with the analysis of the immune repertoire. We present a Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. We used a case study where TCR repertoire profiles were recovered from bulk RNA-seq of isolated CD4 T cells from control patients, cirrhotic patients without and with Minimal Hepatic Encephalopathy (MHE). MHE is a neuropsychiatric syndrome, mediated by peripheral inflammation, that may affect cirrhotic patients. After the recovery of 498-1,114 distinct TCR beta chains per patient, repertoire analysis of patients resulted in few public clones, high diversity and elevated within-repertoire sequence similarity, independently of immune status. Additionally, TCRs associated with celiac disease and inflammatory bowel disease were significantly overrepresented in MHE patient repertoires. The provided computational pipeline functions as a resource to facilitate TCR profiling from RNA-seq data boosting immunophenotype analyses of immunological diseases.We acknowledge generous support by The Leona M. and Harry B. Helmsley Charitable Trust (#2019PG-T1D011, to VG), UiO WorldLeading Research Community (to VG), UiO:LifeScience Convergence Environment Immunolingo (to VG), EU Horizon 2020 iReceptorplus (#825821) (to VG), a Research Council of Norway FRIPRO project (#300740, to VG), a Research Council of Norway IKTPLUSS project (#311341, to VG), a Norwegian Cancer Society Grant (#215817, to VG). This work was also supported in part by Fundación Ramón Areces (to CM), the Ministerio de Ciencia e Innovación Spain (SAF2017- 82917-R and PID2020-113388RB-I00 to VF; FIS PI18/00150 to CM), Consellería Educación Generalitat Valenciana (PROMETEOII/2018/051 to VF), Ministerio de Economía y Competitividad (BIO2015-71658-R to AC), Centro de Investigación Príncipe Felipe (Ayudas para proyectos de investigación intergrupos to TR) and co-funded with European Regional Development Funds (ERDF to VF, CM, AC).Rubio, T.; Chernigovskaya, M.; Marquez, S.; Marti, C.; Izquierdo-Altarejos, P.; Urios, A.; Montoliu, C.... (2022). A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. ImmunoInformatics. 6:1-8. https://doi.org/10.1016/j.immuno.2022.10001218

    Nitic oxide promotes strong cytotoxicity of phenolic compounds against escherichia coli. The influence of antioxidant defenses

    Full text link
    [EN] The induction of mutagenic and cytotoxic effects by simple phenolics, including catechol (CAT), 3,4dihydroxyphenylacetic acid (DOPAC), hydroquinone (HQ), and 2,5-dihydroxyphenylacetic (homogentisic) acid (HGA), appears to occur through an oxidative mechanism based on the ability of these compounds to undergo autoxidation, leading to quinone formation with the production of reactive oxygen species. This is supported by the detection of such adverse effects in plate assays using Escherichia coli tester strains deficient in the OxyR function, but not in OxyR(+) strains. The OxyR protein is a redox-sensitive regulator of genes encoding antioxidant enzymes including catalase and alkyl hydroperoxide reductase, which would eliminate hydrogen peroxide. Methyl-substituted phenolics such as 4-methylcatechol (MCAT) and methy1hydroquinone (MHQ) produced, in addition to oxidative toxicity, marked cytotoxic effects against OxyR(+) cells, thus revealing a mechanism of toxicity not mediated by hydrogen peroxide that could involve quinones and quinone methides arising from MCAT and MHQ oxidation. Quinone compounds could also be responsible for the enhanced cytotoxicity of certain phenolics when combined with a nitric oxide (NO.) donor such as diethylamine/NO (DEA/NO). Phenolics scavenge NO. and, in turn, NO. oxidizes phenolics to form their quinone derivatives. In OxyR(+) cells, where the oxidative toxicity is inhibited, DEA/NO promoted exceptional increases in the cytotoxicity of CAT and 3,4-dihydroxycinnamic (caffeic) acid (CAF), which both exhibited very low oxidative cytotoxicity, as well as in that of MCAT, HQ, and MHQ. In contrast, DEA/NO failed to promote toxicity by DOPAC and HGA, probably due to their ability to undergo oxidative polymerization, leading to the formation of melanins. Spectroscopic studies demonstrated quinone generation from the oxidation of CAF, HQ, and MHQ by DEA/NO. The o-quinone derived from CAF was rather unstable and decomposed during its isolation. For the generation of toxic quinones, e.g., to be used as therapeutic agents producing antitumor or antibacterial effects, the isolation step could be avoided with the method proposed. It combines quinone precursors, i.e. phenolic compounds, with an oxidant such as NO..We thank Dr. Pilar Moya for discussions. We are also grateful to Carmen Navarro and Verónica Ruiz for their technical assistance. This work was supported by an F.I.S. grant (01/ 0151) to M. Blanco and a grant from IZASA SA to J. E. O Connor. J. C. Escudero is the recipient of an F.P.I.-F.V.I.B. fellowship; M. P. López-Gresa is a predoctoral fellow of Generalitat Valenciana; A. Martínez and G. Herrera are the recipients of fellowships from the Universitat de Valencia; A. Urios has a postdoctoral F.V.I.B. fellowship; and M. C. González is a postdoctoral fellow of the Fundación José y Ana Royo.Urios, A.; López-Gresa, MP.; Gonzalez Más, MC.; Primo Millo, J.; Martínez, A.; Herrera, G.; Escudero, JC.... (2003). Nitic oxide promotes strong cytotoxicity of phenolic compounds against escherichia coli. The influence of antioxidant defenses. Free Radical Biology and Medicine. 35(11):1373-1381. https://doi.org/10.1016/j.freeradbiomed.2003.08.007S13731381351
    corecore