6 research outputs found

    Newly identified climatically and environmentally significant high-latitude dust sources

    Get PDF
    Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth's systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km2, >560 000 km2, and >240 000 km2, respectively. In the Arctic HLD region (≥60∘ N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2), area with SI ≥0.7 is 2.3 % (440 804 km2), and area with SI ≥0.9 is 1.1 % (208 701 km2). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50∘ N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55∘ N in Canada and a “cold HLD-source area” including areas north of 60∘ N in Eurasia and north of 58∘ N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD

    Newly identified climatically and environmentally significant high-latitude dust sources

    Get PDF
    Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth\u27s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥0.5), very high (SI ≥0.7), and the highest potential (SI ≥0.9) for dust emission cover >1 670 000 km2^{2}, >560 000 km2^{2}, and >240 000 km2^{2}, respectively. In the Arctic HLD region (≥60^{∘} N), land area with SI ≥0.5 is 5.5 % (1 035 059 km2^{2}), area with SI ≥0.7 is 2.3 % (440 804 km2^{2}), and area with SI ≥0.9 is 1.1 % (208 701 km2^{2}). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50^{∘} N, with a “transitional HLD-source area” extending at latitudes 50–58∘ N in Eurasia and 50–55^{∘} N in Canada and a “cold HLD-source area” including areas north of 60^{∘} N in Eurasia and north of 58^{∘} N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD

    Forecast of the thermal regime of an underground storage facility for heat-generating materials under mixed convection conditions

    Get PDF
    The paper presents the results of a study based on numerical simulation methods of the thermal regime of an underground facility for long-term spent nuclear fuel storage in the version of a built-in reinforced concrete structure. A multiphysical computer model was constructed in a two-dimensional setting by means of the COMSOL software. The mathematical model was based on the continuity equations, Navier-Stokes equations and the general heat transfer equation. The conditions of mixed convection were taken into account in the ‘incompressible ideal gas’ approximation, in which the thermophysical properties of air were a function of temperature only. For two parameters of the model, the following values were taken: the air flow rates providing the velocity at the inflow boundary = 0.01, 0.03 and 0.05 m/s, and the effective heat conductivity coefficients of the material of the built-in structure = 1.0 and 2.0 W/(m×K). Numerical experiments were performed for a period of up to 5 years of fuel storage. Special emphasis was given to the fundamental difference between the non-stationary structure of the velocity fields forecasted in the model of an ‘incompressible ideal gas’ and the ‘frozen’ picture of aerodynamic parameters in the model of an incompressible fluid. An analysis was made of the dynamics of spatial temperature field distributions in different areas of the model. It was shown that the criterion temperature control requirements were met when the facility was operated under conservative ventilation conditions in terms of the air flow rate and the heat conductivity coefficient of the built-in structure material. The dynamics of heat flows directed into the rock mass through the base and from the surface of the built-in structure into the air was analyzed. The heat flow dominance from the structure surface was also noted. Finally, the influence of the effective heat conductivity coefficient of the built-in structure material and the air flow rate on the values of heat flows directed into the air and rock mass was demonstrated

    Comparative Analysis of Results From Deterministic Calculations of the Release of Radioactivity From Geological Disposal of Spent Fuel in Crystalline Rocks

    No full text
    This paper presents results from deterministic calculations of radionuclide migration in a deep geological environment. The concept assumes single canister with spent nuclear fuel situated in bentonite (near-field) and surrounded by crystalline host rock (far-field). The results are presented in the form of release rates from the near-field and far-field, which contains also a part of advective release from the system of two single fractures. Additionally, radiological risk is evaluated in the form of dose rates for a water drinking scenario for an exposed population group. The analyses have been done by using the methodologies and computer codes used at the Institute for Energy EC-JRC in the Netherlands and the Mining Institute KSC RAS in Russia.JRC.F.4-Safety of future nuclear reactor
    corecore