35 research outputs found

    A relação entre a terapia de reposição hormonal e o câncer de mama: revisão de literatura / The relationship between hormone replacement therapy and breast cancer: literature review

    Get PDF
    Para amenizar os efeitos da menopausa, foi desenvolvido o tratamento de Terapia de Reposição Hormonal (TRH), que apresenta riscos e benefícios. Destaca-se dentre os principais riscos, o desenvolvimento de câncer de mama conforme o tempo da terapia. A TRH em mulheres sem histórico de neoplasia mamaria ainda é controversa, sendo indicado por um período máximo de cinco anos

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Mycoplasma hominis Causes DNA Damage and Cell Death in Primary Human Keratinocytes

    No full text
    Mycoplasma hominis can be isolated from the human urogenital tract. However, its interaction with the host remains poorly understood. In this study, we aimed to assess the effects of M. hominis infection on primary human keratinocytes (PHKs). Cells were quantified at different phases of the cell cycle. Proteins involved in cell cycle regulation and apoptosis progression were evaluated. The expression of genes encoding proteins that are associated with the DNA damage response and Toll-like receptor pathways was evaluated, and the cytokines involved in inflammatory responses were quantified. A greater number of keratinocytes were observed in the Sub-G0/G1 phase after infection with M. hominis. In the viable keratinocytes, infection resulted in G2/M-phase arrest; GADD45A expression was increased, as was the expression of proteins such as p53, p27, and p21 and others involved in apoptosis regulation and oxidative stress. In infected PHKs, the expression of genes associated with the Toll-like receptor pathways showed a change, and the production of IFN-γ, interleukin (IL) 1β, IL-18, IL-6, and tumour necrosis factor alpha increased. The infection of PHKs by M. hominis causes cellular damage that can affect the cell cycle by activating the response pathways to cellular damage, oxidative stress, and Toll-like receptors. Overall, this response culminated in the reduction of cell proliferation/viability in vitro

    Co-infection of sexually transmitted pathogens and Human Papillomavirus in cervical samples of women of Brazil

    No full text
    Abstract Background Some sexually transmitted infectious agents, such as Chlamydia trachomatis and Herpes simplex, cause local inflammation, and could contribute to Human Papillomavirus (HPV) and cervical lesion progression. Thus, the aim of this study was to determine any association between the presence of microorganisms of gynecological importance, sexual behavior, clinical and demographical variables to the development and progress of cervical lesions. Methods One hundred and thirty-two women between 14 and 78 years and living at Vitória da Conquista, Bahia, Brazil, were included (62 individuals with cervical lesions and 70 without lesions). They answered a questionnaire to provide data for a socioeconomic and sexual activity profile. Samples of cervical swabs were collected and analyzed by PCR to detect genital microorganisms and HPV. Quantitative PCR was used to detect and quantify Ureaplasma urealyticum and Ureaplasma parvum. Univariate and multiple logistic regression were performed to measure the association with the cervical lesions, and an odds ratio (OR) with 95% confidence intervals (95%CI) were calculated. The Mann-Whitney U test was also used to compare the microorganism load in the case and control groups. The significance level was 5% in all hypotheses tested. Results Cervical lesions were associated with: women in a stable sexual relationship (OR = 14.21, 95%CI = 3.67–55.018), positive PCR for HPV (OR = 16.81, 95%CI = 4.19–67.42), Trichomonas vaginalis (OR = 8.566, 95%CI = 2.04–35.94) and Gardnerella vaginalis (OR = 6.13, 95%CI = 1.53–24.61), adjusted by age and qPCR for U. parvum. U. parvum load showed a statistical difference between the case and control groups (p-value = 0.002). Conclusion Variables such as stable relationship, HPV, T. vaginalis, G. vaginalis were associated with cervical lesions in epidemiological studies. U. parvum load was higher in woman with cervical lesions compared with women without lesions. Additional studies are needed to better understand the role of these factors in cervical lesion development
    corecore