51 research outputs found

    Preoperative SARS-CoV-2 infection screening before thoracic surgery during COVID-19 pandemic: a multicenter retrospective study

    Get PDF
    Objectives. During coronavirus disease (COVID-19) pandemic, preoperative screening before thoracic surgery is paramount in order to protect patients and staff from undetected infections. This study aimed to determine which preoperative COVID-19 screening tool was the most effective strategy before thoracic surgery. Methods. This retrospective cohort multicenter study was performed at 3 Italian thoracic surgery centers. All adult patients scheduled for thoracic surgery procedures from 4th March until 24th April, 2020, and submitted to COVID-19 preoperative screenings were included. The primary outcome was the yield of screening of the different strategies. Results. A total of 430 screenings were performed on 275 patients; 275 anamnestic questionnaires were administered. 77 patients were screened by an anamnestic questionnaire and reverse transcriptase polymerase chain reaction (RT-PCR). 78 patients were selected to combine screening with anamnestic questionnaire and chest computed tomography (CT). The positive yield of screening using a combination of anamnestic questionnaire and RT-PCR was 7.8% (95% CI: 2.6-14.3), while using a combination of anamnestic questionnaire and chest CT was 3.8% (95% CI: 0-9). Individual yields were 1.1% (95% CI: 0-2.5) for anamnestic questionnaire, 5.2% (95% CI: 1.3-11.7) for RT-PCR, and 3.8% (95% CI: 0-9). Conclusions. The association of anamnestic questionnaire and RT-PCR is able to detect around 8 positives in 100 asymptomatic patients. This combined strategy could be a valuable preoperative SARS-CoV-2 screening tool before thoracic surgery

    A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes

    Get PDF
    During development, extracellular signaling molecules interact with intracellular gene networks to control the specification, pattern and size of organs. One such signaling molecule is Hedgehog (Hh). Hh is known to act as a morphogen, instructing different fates depending on the distance to its source. However, how Hh, when signaling across a cell field, impacts organ-specific transcriptional networks is still poorly understood. Here, we investigate this issue during the development of the Drosophila ocellar complex. The development of this sensory structure, which is composed of three simple eyes (or ocelli) located at the vertices of a triangular patch of cuticle on the dorsal head, depends on Hh signaling and on the definition of three domains: two areas of eya and so expression - the prospective anterior and posterior ocelli - and the intervening interocellar domain. Our results highlight the role of the homeodomain transcription factor engrailed (en) both as a target and as a transcriptional repressor of hh signaling in the prospective interocellar region. Furthermore, we identify a requirement for the Notch pathway in the establishment of en maintenance in a Hh-independent manner. Therefore, hh signals transiently during the specification of the interocellar domain, with en being required here for hh signaling attenuation. Computational analysis further suggests that this network design confers robustness to signaling noise and constrains phenotypic variation. In summary, using genetics and modeling we have expanded the ocellar gene network to explain how the interaction between the Hh gradient and this gene network results in the generation of stable mutually exclusive gene expression domains. In addition, we discuss some general implications our model may have in some Hh-driven gene networks.Ministerio de Ciencias e Innovacion BFU2009-07044 FIS2008-04120Junta de Andalucía CVI 265

    The Association Between Dyslipidemia and Lethality of Suicide Attempts: A Case-Control Study

    Get PDF
    Evidence supports the existence of an association between dyslipidemia, psychiatric disorders, and suicide risk due to the effects of altered lipid profiles on serotoninergic neuron membranes. The aim of this study was to investigate the differences in c-reactive protein (CRP), thyroid functioning, total cholesterol, high lipoprotein density cholesterol (HDL-c), low-lipoprotein density cholesterol (LDL-c), and triglycerides (TG) serum levels in low lethality (LLSA) vs. high lethality suicide attempters (HLSA) within 24 h from the suicide attempt and inpatients who never attempted suicide (NAS). After attempting suicide, subjects were admitted to the emergency ward of the IRCCS Ospedale Policlinico San Martino and later to the section of Psychiatry from 1st August 2013 to 31st July 2018. Socio-demographic and clinical characteristics, serum lipids profile, CRP, and thyroid functioning were collected. The sample consisted of 133 individuals with a HLSA, 299 subjects with LLSA, and 200 patients NAS. HLSA subjects were more likely to be males and diagnosed as having a bipolar disorder. Furthermore, HLSA subgroup showed significantly lower total cholesterol and LDL-c levels and higher CRP serum levels compared to LLSA and control group, respectively. LLSA subgroup showed higher HDL-c levels compared to HLSA subgroup (no differences between HLSA and control group were observed). Additionally, the control group reported higher triglycerides levels compared to patients admitted to psychiatric ward for a suicide attempt. Only male gender, having a diagnosis of bipolar disorder, lower total cholesterol, and higher CRP serum levels predicted HLSA. Investigating the relation between dyslipidemia and the severity of suicide attempts may contribute to reveal the complex determinants underlying at-risk behaviors such as suicide, thus playing a relevant role in the possible prevention of this disabling phenomenon

    The second Venus flyby of BepiColombo mission reveals stable atmosphere over decades

    Get PDF
    Studies of the Venusian mesosphere provide important information about the current state of the entire Venusian atmosphere. This includes information about the dense cloud structure, its vertical thermal profile, temperature fields, and the resulting dynamical and meteorological processes that contribute to a deeper understanding of the climatologically different evolutionary paths of Earth and Venus. However, the last measurements were acquired in 1983 during Venera-15 mission. In this paper, results of mid-infrared spectral measurements of the Venusian atmosphere are presented. Here we show Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) measurements of the Venusian atmosphere during the second flyby of BepiColombo mission on its way to Mercury. Our Venus measurements provide reliable retrievals of mesospheric temperature profiles and cloud parameters between 60 and 75 km altitude, although MERTIS was only designed to operate in Mercury environment. Our results are in good agreement with the Venera-15 mission findings. This indicates the stability of the Venusian atmosphere on time scales of decades

    Compositional Genome Contexts Affect Gene Expression Control in Sea Urchin Embryo

    Get PDF
    Gene expression is widely perceived as exclusively controlled by the information contained in cis-regulatory regions. These are built in a modular way, each module being a cluster of binding sites for the transcription factors that control the level, the location and the time at which gene transcription takes place. On the other hand, results from our laboratory have shown that gene expression is affected by the compositional properties (GC levels) of the isochores in which genes are embedded, i.e. the genome context. To clarify how compositional genomic properties affect the way cis-regulatory information is utilized, we have changed the genome context of a GFP-reporter gene containing the complete cis-regulatory region of the gene spdeadringer (spdri), expressed during sea urchin embryogenesis. We have observed that GC levels higher or lower than those found in the natural genome context can alter the reporter expression pattern. We explain this as the result of an interference with the functionality of specific modules in the gene's cis-regulatory region. From these observations we derive the notion that the compositional properties of the genome context can affect cis-regulatory control of gene expression. Therefore although the way a gene works depends on the information contained in its cis-regulatory region, availability of such information depends on the compositional properties of the genomic context

    Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development

    Get PDF
    Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cisregulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'. \uc2\ua9 The Author(s) 2013. Published by Oxford University Press

    Built Shallow to Maintain Homeostasis and Persistent Infection: Insight into the Transcriptional Regulatory Network of the Gastric Human Pathogen Helicobacter pylori

    Get PDF
    Transcriptional regulatory networks (TRNs) transduce environmental signals into coordinated output expression of the genome. Accordingly, they are central for the adaptation of bacteria to their living environments and in host–pathogen interactions. Few attempts have been made to describe a TRN for a human pathogen, because even in model organisms, such as Escherichia coli, the analysis is hindered by the large number of transcription factors involved. In light of the paucity of regulators, the gastric human pathogen Helicobacter pylori represents a very appealing system for understanding how bacterial TRNs are wired up to support infection in the host. Herein, we review and analyze the available molecular and “-omic” data in a coherent ensemble, including protein–DNA and protein–protein interactions relevant for transcriptional control of pathogenic responses. The analysis covers ∼80% of the annotated H. pylori regulators, and provides to our knowledge the first in-depth description of a TRN for an important pathogen. The emerging picture indicates a shallow TRN, made of four main modules (origons) that process the physiological responses needed to colonize the gastric niche. Specific network motifs confer distinct transcriptional response dynamics to the TRN, while long regulatory cascades are absent. Rather than having a plethora of specialized regulators, the TRN of H. pylori appears to transduce separate environmental inputs by using different combinations of a small set of regulators

    cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo

    Get PDF
    The Strongylocentrotus purpuratus cyclophilin1 gene (Sp-cyp1) is expressed exclusively in skeletogenic mesenchyme cells of the embryo, beginning in the micromere lineage of the early blastula stage and continuing after gastrulation during the syncytial deposition of the skeleton. This gene encodes a protein which is a member of the peptidyl-prolyl cis–trans isomerase (PPIase) family. Sp-cyp1 is among the differentiation genes activated in the skeletogenic territory as a terminal function of the endomesodermal gene regulatory network. Network perturbation analysis had predicted the skeletogenic regulators Ets1 and Deadringer (Dri) to be its driver inputs. Here, we show that a 218-bp cis-regulatory DNA fragment recapitulates skeletogenic Sp-cyp1 expression; that elimination of either Ets1 or Dri inputs severely depresses the activity of expression constructs containing this DNA fragment; and that Ets1 and Dri target sites within the 218 bp fragment are required for normal expression. This indicates that the predicted inputs are direct. Other studies indicate that the same inputs are evidently necessary for expression of several other skeletogenic differentiation genes, and these genes probably constitute a skeletogenic gene battery, defined by its Ets plus Dri regulatory inputs
    corecore