168 research outputs found
Family Features of Social Withdrawal Syndrome (Hikikomori)
Background: Family may play an important role in the origin, maintenance, and treatment of people with social withdrawal. The aim of this study is to analyze family factors related to social withdrawal syndrome. Methods: Socio-demographic, clinical, and family data, including family psychiatric history, dysfunctional family dynamics, and history of family abuse were analyzed in 190 cases of social withdrawal with a minimum duration of 6 months that started an at-home treatment program. Data were analyzed at baseline and at 12 months. Results: In 36 cases (18%) neither the patient nor the family allowed at home evaluation and treatment by the Crisis Resolution Home Treatment (CRHT) team. Patients had high rates of dysfunctional family dynamics (n = 115, 61.5%), and family psychiatric history (n = 113, 59.3%), especially maternal affective (n = 22, 42.9%), and anxiety disorders (n = 11 20.4%). There was a non-negligible percentage of family maltreatment in childhood (n = 35, 20.7%) and single-parent families (n = 66, 37.8%). Most of the cases lived with their families (n = 135, 86%), had higher family collaboration in the therapeutic plan (n = 97, 51.9%) and families were the ones to detect patient isolation and call for help (n = 140, 73.7%). Higher social withdrawal severity (as defined by at least one of: early age of onset, no family collaboration, lack of insight, higher CGSI score, and higher Zarit score), was associated with family psychiatric history, dysfunctional family dynamics, and family abuse history. All of these predictive variables were highly correlated one to each other. Conclusions: There is a high frequency of family psychiatric history, dysfunctional family dynamics, and traumatic events in childhood (family maltreatment), and these factors are closely interrelated, highlighting the potential role of family in the development and maintenance of social withdrawal
Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors
Aurora B activity is inhibited when centromeric repeat sequences are absent, although kinetochores can still assemble
Systemic Gene Delivery in Large Species for Targeting Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders
Adeno-associated virus type 9 (AAV9) is a powerful tool for delivering genes throughout the central nervous system (CNS) following intravenous injection. Preclinical results in pediatric models of spinal muscular atrophy (SMA) and lysosomal storage disorders provide a compelling case for advancing AAV9 to the clinic. An important translational step is to demonstrate efficient CNS targeting in large animals at various ages. In the present study, we tested systemically injected AAV9 in cynomolgus macaques, administered at birth through 3 years of age for targeting CNS and peripheral tissues. We show that AAV9 was efficient at crossing the blood–brain barrier (BBB) at all time points investigated. Transgene expression was detected primarily in glial cells throughout the brain, dorsal root ganglia neurons and motor neurons within the spinal cord, providing confidence for translation to SMA patients. Systemic injection also efficiently targeted skeletal muscle and peripheral organs. To specifically target the CNS, we explored AAV9 delivery to cerebrospinal fluid (CSF). CSF injection efficiently targeted motor neurons, and restricted gene expression to the CNS, providing an alternate delivery route and potentially lower manufacturing requirements for older, larger patients. Our findings support the use of AAV9 for gene transfer to the CNS for disorders in pediatric populations
Catechol-O-Methyltransferase (COMT) Val(108/158 )Met polymorphism does not modulate executive function in children with ADHD
BACKGROUND: An association has been observed between the catechol-O-methyltransferase (COMT) gene, the predominant means of catecholamine catabolism within the prefrontal cortex (PFC), and neuropsychological task performance in healthy and schizophrenic adults. Since several of the cognitive functions typically deficient in children with Attention Deficit Hyperactivity Disorder (ADHD) are mediated by prefrontal dopamine (DA) mechanisms, we investigated the relationship between a functional polymorphism of the COMT gene and neuropsychological task performance in these children. METHODS: The Val(108/158 )Met polymorphism of the COMT gene was genotyped in 118 children with ADHD (DSM-IV). The Wisconsin Card Sorting Test (WCST), Tower of London (TOL), and Self-Ordered Pointing Task (SOPT) were employed to evaluate executive functions. Neuropsychological task performance was compared across genotype groups using analysis of variance. RESULTS: ADHD children with the Val/Val, Val/Met and Met/Met genotypes were similar with regard to demographic and clinical characteristics. No genotype effects were observed for WCST standardized perseverative error scores [F(2,97 )= 0.67; p > 0.05], TOL standardized scores [F(2,99 )= 0.97; p > 0.05], and SOPT error scores [F(2,108 )= 0.62; p > 0.05]. CONCLUSIONS: Contrary to the observed association between WCST performance and the Val(108/158 )Met polymorphism of the COMT gene in both healthy and schizophrenic adults, this polymorphism does not appear to modulate executive functions in children with ADHD
Quality control of B-lines analysis in stress Echo 2020
Background
The effectiveness trial “Stress echo (SE) 2020” evaluates novel applications of SE in and beyond coronary artery disease. The core protocol also includes 4-site simplified scan of B-lines by lung ultrasound, useful to assess pulmonary congestion.
Purpose
To provide web-based upstream quality control and harmonization of B-lines reading criteria.
Methods
60 readers (all previously accredited for regional wall motion, 53 B-lines naive) from 52 centers of 16 countries of SE 2020 network read a set of 20 lung ultrasound video-clips selected by the Pisa lab serving as reference standard, after taking an obligatory web-based learning 2-h module (
http://se2020.altervista.org
). Each test clip was scored for B-lines from 0 (black lung, A-lines, no B-lines) to 10 (white lung, coalescing B-lines). The diagnostic gold standard was the concordant assessment of two experienced readers of the Pisa lab. The answer of the reader was considered correct if concordant with reference standard reading ±1 (for instance, reference standard reading of 5 B-lines; correct answer 4, 5, or 6). The a priori determined pass threshold was 18/20 (≥ 90%) with R value (intra-class correlation coefficient) between reference standard and recruiting center) > 0.90. Inter-observer agreement was assessed with intra-class correlation coefficient statistics.
Results
All 60 readers were successfully accredited: 26 (43%) on first, 24 (40%) on second, and 10 (17%) on third attempt. The average diagnostic accuracy of the 60 accredited readers was 95%, with R value of 0.95 compared to reference standard reading. The 53 B-lines naive scored similarly to the 7 B-lines expert on first attempt (90 versus 95%, p = NS). Compared to the step-1 of quality control for regional wall motion abnormalities, the mean reading time per attempt was shorter (17 ± 3 vs 29 ± 12 min, p < .01), the first attempt success rate was higher (43 vs 28%, p < 0.01), and the drop-out of readers smaller (0 vs 28%, p < .01).
Conclusions
Web-based learning is highly effective for teaching and harmonizing B-lines reading. Echocardiographers without previous experience with B-lines learn quickly.info:eu-repo/semantics/publishedVersio
Fusarium: more than a node or a foot-shaped basal cell
Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)
- …