202 research outputs found

    Yield Erosion Sediment (YES): A PyQGIS Plug-In for the Sediments Production Calculation Based on the Erosion Potential Method

    Get PDF
    The Erosion Potential Method is a model for qualifying the erosion severity and estimating the total annual sediment yield of a catchment. The method includes a diverse set of equations, which are influenced by different factors such as geology, morphology, climate and soil use. This study describes a PyQGIS YES plug-in, which allows a semiautomatized use of the Erosion Potential Method in Geographic Information System (GIS) environment. In detail, we developed a plug-in using Python programming language that is made up of a series of operations allowing one to estimate sediment production through a wizard procedure. The first stage consists of data preprocessing and involves: (i) loading of the layers (e.g., geological map); (ii) spatial selection of the catchment area; (iii) elaboration of loaded layers (e.g., clipping). During the second stage, the user assigns a relative coefficient to each factor either by selecting a preloaded value from bibliographic sources or by inserting a value inferred from field observations and data. The third stage includes the addition of rainfall and temperature values loaded as: average values, point shapefiles (the plug-in calculates the average monthly values) or tables (the plug-in creates the linear regression depending on altitude). During the final stage, the plug-in executes the equation of EPM Model obtaining the sediment yield value at basin scale. Additionally, the user can use the “squared cell” method choosing the appropriate option in the setting dialogue of the plug-in. This method divides the catchment area in a regularly-spaced grid which allows one to carry out the distribution map of the sediment production during the final stage

    Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-mir-17-92

    Get PDF
    The microRNA cluster miR-17-92 is oncogenic and represents a valuable therapeutic target in c-MYC (MYC)-driven malignancies. Here, we developed novel LNA gapmeR antisense oligonucleotides (ASOs) to induce RNase H-mediated degradation of MIR17HG primary transcripts and, consequently, to prevent biogenesis of miR-17-92 microRNAs (miR-17-92s). The leading LNA-ASO, named MIR17PTi, impaired proliferation of several cancer cell lines (n=48) established from both solid and hematologic tumors by on-target antisense activity, and more effectively as compared to miR-17-92s inhibitors. By focusing on multiple myeloma (MM), we found that MIR17PTi triggers apoptosis via impairment of homeostatic MYC/miR-17-92 feed-forward loops (FFLs) in patient-derived MM cells; and induced MYC-dependent synthetic lethality. We show that alteration of a BIM-centered FFL is instrumental for MIR17PTi to induce cytotoxicity in MM cells. MIR17PTi exerts strong in vivo anti-tumor activity in NOD-SCID mice bearing clinically relevant models of MM, with advantageous safety and pharmacokinetics profiles in non-human primates. Altogether, MIR17PTi is a novel pharmacological tool to be tested in early-phase clinical trials against MM and other MYC-driven malignancies

    Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo

    Get PDF
    Interferon regulatory factor 4 (IRF4) is an attractive therapeutic target in multiple myeloma (MM). We here report that expression of IRF4 mRNA inversely correlates with microRNA (miR)-125b in MM patients. Moreover, we provide evidence that miR-125b is downregulated in TC2/3 molecular MM subgroups and in established cell lines. Importantly, constitutive expression of miR-125b-5p by lentiviral vectors or transfection with synthetic mimics impaired growth and survival of MM cells and overcame the protective role of bone marrow stromal cells (BMSCs) in vitro. Apoptotic and autophagy-associated cell death were triggered in MM cells upon miR-125b-5p ectopic expression. Importantly, we found that the anti-MM activity of miR-125b-5p was mediated via direct downregulation of IRF4 and its downstream effector BLIMP-1. Moreover, inhibition of IRF4 translated into downregulation of c-Myc, caspase-10 and cFlip, relevant IRF4-downstream effectors. Finally, in vivo intra-tumor or systemic delivery of formulated miR-125b-5p mimics against human MM xenografts in SCID/NOD mice induced significant anti-tumor activity and prolonged survival. Taken together, our findings provide evidence that miR-125b, differently from other hematologic malignancies, has tumor suppressor activity in MM. Furthermore, our data provide proof-of-concept that synthetic miR-125b-5p mimics are promising anti-MM agents to be validated in early clinical trials

    Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity

    Get PDF
    The biological role and therapeutic potential of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) are still to be investigated. Here, we studied the functional significance and the druggability of the oncogenic lncRNA MALAT1 in MM. Targeting MALAT1 by novel LNA-gapmeR antisense oligonucleotide antagonized MM cell proliferation and triggered apoptosis both in vitro and in vivo in a murine xenograft model of human MM. Of note, antagonism of MALAT1 downmodulated the two major transcriptional activators of proteasome subunit genes, namely NRF1 and NRF2, and resulted in reduced trypsin, chymotrypsin and caspase-like proteasome activities and in accumulation of polyubiquitinated proteins. NRF1 and NRF2 decrease upon MALAT1 targeting was due to transcriptional activation of their negative regulator KEAP1, and resulted in reduced expression of anti-oxidant genes and increased ROS levels. In turn, NRF1 promoted MALAT1 expression thus establishing a positive feedback loop. Our findings demonstrate a crucial role of MALAT1 in the regulation of the proteasome machinery, and provide proof-of-concept that its targeting is a novel powerful option for the treatment of MM

    The experience of beauty derived from sorrow

    Get PDF
    We studied the neural mechanisms that are engaged during the experience of beauty derived from sorrow and from joy, two experiences that share a common denominator (beauty) but are linked to opposite emotional valences. Twenty subjects viewed and rerated, in a functional magnetic resonance imaging scanner, 120 images which each had classified into the following four categories: beautiful and sad; beautiful and joyful; neutral; ugly. The medial orbito-frontal cortex (mOFC) was active during the experience of both types of beauty. Otherwise, the two experiences engaged different parts of the brain: joyful beauty engaged areas linked to positive emotions while sorrowful beauty engaged areas linked to negative experiences. Separate regions of the cerebellum were engaged during experience of the two conditions. A functional connectivity analysis indicated that the activity within the mOFC was modulated by the supplementary motor area/middle cingulate cortex, known to be engaged during empathetic experiences provoked by other peoples' sadness

    Synthetic miR-34a mimics as a novel therapeutic agent for Multiple Myeloma : in vitro and in vivo evidence

    Get PDF
    PURPOSE: Deregulated expression of microRNAs (miRNAs) has been demonstrated in multiple myeloma (MM). A promising strategy to achieve a therapeutic effect by targeting the miRNA regulatory network is to enforce the expression of miRNAs that act as tumor suppressor genes, such as miR-34a EXPERIMENTAL DESIGN: Here, we investigated the therapeutic potential of synthetic miR-34a against human MM cells in vitro and in vivo RESULTS: Either transient expression of miR-34a synthetic mimics or lentivirus-based stable enforced expression of miR-34a gene triggered growth inhibition and apoptosis in MM cells in vitro. Synthetic miR-34a downregulated canonic targets BCL2, CDK6 and NOTCH1 at both the mRNA and protein level. Lentiviral vector-transduced MM xenografts with constitutive miR-34a expression showed high growth inhibition in SCID mice. The anti-MM activity of lipidic-formulated miR-34a was further demonstrated in vivo in two different experimental settings: i) SCID mice bearing non transduced MM xenografts; and ii) SCID-synth-hu mice implanted with synthetic 3D scaffolds reconstituted with human bone marrow stromal cells and then engrafted with human MM cells. Relevant tumor growth inhibition and survival improvement were observed in mice bearing TP53-mutated MM xenografts treated with miR-34a mimics in the absence of systemic toxicity CONCLUSIONS: Our findings provide a proof-of-principle that formulated synthetic miR-34a has therapeutic activity in preclinical models and support a framework for development of miR-34a-based treatment strategies in MM patients

    Synthetic miR-34a mimics as a novel therapeutic agent for Multiple Myeloma : in vitro and in vivo evidence

    Get PDF
    PURPOSE: Deregulated expression of microRNAs (miRNAs) has been demonstrated in multiple myeloma (MM). A promising strategy to achieve a therapeutic effect by targeting the miRNA regulatory network is to enforce the expression of miRNAs that act as tumor suppressor genes, such as miR-34a EXPERIMENTAL DESIGN: Here, we investigated the therapeutic potential of synthetic miR-34a against human MM cells in vitro and in vivo RESULTS: Either transient expression of miR-34a synthetic mimics or lentivirus-based stable enforced expression of miR-34a gene triggered growth inhibition and apoptosis in MM cells in vitro. Synthetic miR-34a downregulated canonic targets BCL2, CDK6 and NOTCH1 at both the mRNA and protein level. Lentiviral vector-transduced MM xenografts with constitutive miR-34a expression showed high growth inhibition in SCID mice. The anti-MM activity of lipidic-formulated miR-34a was further demonstrated in vivo in two different experimental settings: i) SCID mice bearing non transduced MM xenografts; and ii) SCID-synth-hu mice implanted with synthetic 3D scaffolds reconstituted with human bone marrow stromal cells and then engrafted with human MM cells. Relevant tumor growth inhibition and survival improvement were observed in mice bearing TP53-mutated MM xenografts treated with miR-34a mimics in the absence of systemic toxicity CONCLUSIONS: Our findings provide a proof-of-principle that formulated synthetic miR-34a has therapeutic activity in preclinical models and support a framework for development of miR-34a-based treatment strategies in MM patients

    Late-Proterozoic to Paleozoic history of the peri-Gondwana Calabria–Peloritani Terrane inferred from a review of zircon chronology

    Get PDF
    U–Pb analyses of zircon from ten samples of augen gneisses, eight mafic and intermediate metaigneous rocks and six metasediments from some tectonic domains along the Calabria–Peloritani Terrane (Southern Italy) contribute to knowledge of peri-Gondwanan evolution from Late-Proterozoic to Paleozoic times. All samples were equilibrated under amphibolite to granulite facies metamorphism during the Variscan orogeny. The zircon grains of all considered samples preserve a Proterozoic memory suggestive of detrital, metamorphic and igneous origin. The available data fit a frame involving: (1) Neoproterozoic detrital input from cratonic areas of Gondwana; (2) Pan-African/Cadomian assemblage of blocks derived from East and West African Craton; (3) metamorphism and bimodal magmatism between 535 and 579 Ma, within an active margin setting; (4) rifting and opening of Ordovician basins fed by detrital input from the assembled Cadomian blocks. The Paleozoic basins evolved through sedimentation, metamorphism and magmatism during the Variscan orogeny involving Palaeozoic and pre-Paleozoic blocks. The Proterozoic zircon records decidedly decrease in the high grade metamorphic rocks affected by Variscan pervasive partial melting. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40064-016-1839-8) contains supplementary material, which is available to authorized users

    Development of the social brain from age three to twelve years

    Get PDF
    Human adults recruit distinct networks of brain regions to think about the bodies and minds of others. This study characterizes the development of these networks, and tests for relationships between neural development and behavioral changes in reasoning about others' minds ('theory of mind', ToM). A large sample of children (n = 122, 3-12 years), and adults (n = 33), watched a short movie while undergoing fMRI. The movie highlights the characters' bodily sensations (often pain) and mental states (beliefs, desires, emotions), and is a feasible experiment for young children. Here we report three main findings: (1) ToM and pain networks are functionally distinct by age 3 years, (2) functional specialization increases throughout childhood, and (3) functional maturity of each network is related to increasingly anti-correlated responses between the networks. Furthermore, the most studied milestone in ToM development, passing explicit false-belief tasks, does not correspond to discontinuities in the development of the social brain.National Science Foundation (U.S.) (Award 1122374)National Science Foundation (U.S.) (Award 095518)National Institutes of Health (U.S.) (Award R01-MH096914-05
    • 

    corecore