1,982 research outputs found
Crossover from quasi-static to dense flow regime in compressed frictional granular media
We investigate the evolution of multi-scale mechanical properties towards the
macroscopic mechanical instability in frictional granular media under
multiaxial compressive loading. Spatial correlations of shear stress
redistribution following nucleating contact sliding events and shear strain
localization are investigated. We report growing correlation lengths associated
to both shear stress and shear strain fields that diverge simultaneously as
approaching the transition to a dense flow regime. This shows that the
transition from quasi static to dense flow regime can be interpreted as a
critical phase transition. Our results suggest that no shear band with a
characteristic thickness has formed at the onset of instability
Silvia Viviana Corbalán , Los ocho espíritus malvados según Evagrio Póntico. Origen, evolución, interpreta - ciones sucesivas y aplicación actual , Buenos Aires, Ágape Libros, 2015, ISBN: 978-987-640-401-3, 179 pp.
Fil: Amitrano, María José
Variability in the power-law distributions of rupture events, How and why does b-value change
International audienceRupture events, as the propagation of cracks or the sliding along faults, associated with the deformation of brittle materials are observed to obey power-law distributions. This is verified at scales ranging from laboratory samples to the Earth's crust, for various materials and under various loading modes. Besides the claim that this is a universal characteristic of the deformation of heterogeneous media, spatial and temporal variations are observed in the exponent and tail-shape. These have considerable implications for the ability and the reliability of forecasting large events from smaller ones. There is a growing interest in identifying the factors responsible for these variations. In this work, we first present observations at various scales (laboratory tests, field experiments, landslides, mining induced seismicity, crustal Earthquakes) showing that substantial variations exist in both the slope and the tail-shape of the rupture event size distribution. This review allows us to identify potential explanations for these variations (incorrect statistical methods, heterogeneity, stress, brittle/ductile transition, finite size effects, proximity to the failure). A possible link with the critical point theory is also drawn showing that it is able to explain a part of the observed variations considering the distance to the critical point. Using numerical simulations of progressive failure we investigate the role of mechanical properties on the power-law distributions. The results of simulations agree with the critical point theory for various macroscopic behaviors ranging from ductility to brittleness providing a unified framework for the understanding of power-law variability observed in rupture phenomena
Damage-cluster distributions and size effect on strength in compressive failure
We investigate compressive failure of heterogeneous materials on the basis of
a continuous progressive damage model. The model explicitely accounts for
tensile and shear local damage and reproduces the main features of compressive
failure of brittle materials like rocks or ice. We show that the size
distribution of damage-clusters, as well as the evolution of an order
parameter, the size of the largest damage-cluster, argue for a critical
interpretation of fracture. The compressive failure strength follows a normal
distribution with a very small size effect on the mean strength, in good
agreement with experiments
O TRATADO SOBRE A MOEDA E A TEORIA GERAL DE KEYNES: CONTINUIDADES E RUPTURAS
This paper tries to identify some points of touch between the Treatise on Money and the General Theory of Keynes, since a detailed analysis of some passages of the Treatise.
Brittle creep, damage and time to failure in rocks
International audienceWe propose a numerical model based on static fatigue laws in order to model the time-dependent damage and deformation of rocks under creep. An empirical relation between time to failure and applied stress is used to simulate the behavior of each element of our finite element model. We review available data on creep experiments in order to study how the material properties and the loading conditions control the failure time. The main parameter that controls the failure time is the applied stress. Two commonly used models, an exponential tfexp (bs/s0) and a power law function tfsb0 fit the data as well. These time-to-failure laws are used at the scale of each element to simulate its damage as a function of its stress history. An element is damaged by decreasing its Young's modulus to simulate the effect of increasing crack density at smaller scales. Elastic interactions between elements and heterogeneity of the mechanical properties lead to the emergence of a complex macroscopic behavior, which is richer than the elementary one. In particular, we observe primary and tertiary creep regimes associated respectively with a power law decay and increase of the rate of strain, damage event and energy release. Our model produces a power law distribution of damage event sizes, with an average size that increases with time as a power law until macroscopic failure. Damage localization emerges at the transition between primary and tertiary creep, when damage rate starts accelerating. The final state of the simulation shows highly damaged bands, similar to shear bands observed in laboratory experiments. The thickness and the orientation of these bands depend on the applied stress. This model thus reproduces many properties of rock creep, which were previously not modeled simultaneously
High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales
The surface roughness of a recently exhumed strikeslip fault plane has been
measured by three independent 3D portable laser scanners. Digital elevation
models of several fault surface areas, from 1 m2 to 600 m2, have been measured
at a resolution ranging from 5 mm to 80 mm. Out of plane height fluctuations
are described by non-Gaussian distribution with exponential long range tails.
Statistical scaling analyses show that the striated fault surface exhibits
self-affine scaling invariance with a small but significant directional
morphological anisotropy that can be described by two scaling roughness
exponents, H1 = 0.7 in the direction of slip and H2 = 0.8 perpendicular to the
direction of slip
Parallel Algorithm and Dynamic Exponent for Diffusion-limited Aggregation
A parallel algorithm for ``diffusion-limited aggregation'' (DLA) is described
and analyzed from the perspective of computational complexity. The dynamic
exponent z of the algorithm is defined with respect to the probabilistic
parallel random-access machine (PRAM) model of parallel computation according
to , where L is the cluster size, T is the running time, and the
algorithm uses a number of processors polynomial in L\@. It is argued that
z=D-D_2/2, where D is the fractal dimension and D_2 is the second generalized
dimension. Simulations of DLA are carried out to measure D_2 and to test
scaling assumptions employed in the complexity analysis of the parallel
algorithm. It is plausible that the parallel algorithm attains the minimum
possible value of the dynamic exponent in which case z characterizes the
intrinsic history dependence of DLA.Comment: 24 pages Revtex and 2 figures. A major improvement to the algorithm
and smaller dynamic exponent in this versio
Auscultation et surveillance des pertubations hydromécaniques d'ouvrages souterrains par la mesure et l'analyse de la propagation d'ondes dans les roches
International audienceThe excavation of a drift creates a disturbed zone, which is called EDZ (Excavation Disturbed or Damaged Zone). The study of the mechanical characteristics of this zone is essential to estimate the stability of such a drift at short, mean or long term. The propagation of ultrasonic waves is used as a mean of analysis in rock mechanics since the 1960s. Initially, it was used to determine the dynamic elastic properties. Then, it was gradually adapted to the study of the other properties of the material such as cracking, porosity, saturation, etc. With the computer tools continuously more powerful, a more elaborated treatment of the signals became possible, which allows characterization of the "EDZ". The Tests carried out in laboratory, allowed us to correlate P-wave and mechanical parameters of the studied media in elastic and plastic phases. Besides, the mechanical modeling of the EDZ around a drift allows understanding the mechanical phenomena on the scale of the work. Finally, the results of an in-site experiment allowed us to locate the EDZ around an underground mine pillar. It contributed to have a better understanding of the mechanical models available and to estimate the pillar stability.Lorsqu'une galerie est excavée, quelle que soit la méthode d'excavation, la roche encaissante subit des perturbations dans une zone dite EDZ (Excavation Disturbed or Damaged Zone). Ces perturbations peuvent se traduire par différents effets allant d'une faible variation de la pression interstitielle à un endommagement important, voire la rupture de l'ouvrage et peuvent mettre en danger la stabilité d'une partie ou de l'ensemble de l'ouvrage souterrain concerné. L'étude des caractéristiques mécaniques de cette zone " EDZ " est essentielle pour estimer la stabilité de l'ouvrage à court, moyen ou long terme. La propagation des ondes ultrasoniques est utilisée comme moyen d'analyse en mécanique des roches depuis les années 1960. Initialement, elle a été mise au point pour déterminer les modules élastiques dynamiques des roches. Ensuite, elle a progressivement été adaptée à l'étude d'autres propriétés du matériau telles que : fissuration, porosité, saturation, etc. Avec les outils informatiques sans cesse plus puissants, un traitement des signaux plus élaboré est devenu possible, ce qui permet d'envisager la caractérisation de l' " EDZ " par cette méthode. Des essais en laboratoire à la fois acoustiques et mécaniques, nous ont permis de relier qualitativement les paramètres de propagation des ondes et les caractéristiques mécaniques du milieu étudié pendant les phases élastique et plastique. Par ailleurs, la modélisation mécanique de l'EDZ autour d'une galerie permet de comprendre les phénomènes mis en jeux à l'échelle de l'ouvrage. Enfin, les résultats d'une expérimentation in situ ont permis de caractériser la distribution de la zone endommagée autour d'un pilier de mine, ce qui a contribué à la vérification des modèles mécaniques existants et à l'estimation de la stabilité de l'ouvrage
- …
