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Abstract. We propose a numerical model based on static fatigue laws in order to model
the time-dependent damage and deformation of rocks under creep. An empirical rela-
tion between time-to-failure and applied stress is used to simulate the behavior of each
element of our finite element model. We first review available data on creep experiments,
in order to study how the material properties and the loading conditions control the fail-
ure time. The main parameter that controls the failure time is the applied stress. Two
commonly used models, an exponential tf ∼ exp(−bσ/σ0) and a power law function

tf ∼ σ/σ0

b′

fit the data as well. These time-to-failure laws are used at the scale of each
element to simulate its damage as a function of its stress history. An element is dam-
aged by decreasing its young modulus, to simulate the effect of increasing crack density
at smaller scales. Elastic interactions between elements and heterogeneity of the mechan-
ical properties lead to the emergence of a complex macroscopic behavior, which is richer
than the elementary one. In particular, we observe primary and tertiary creep regimes
associated respectively with a power-law decay and increase of the rate of strain, dam-
age event and energy release. Our model produces a power-law distribution of damage
event sizes, with an average size that increases with time as a power-law until macro-
scopic failure. Damage localization emerges at the transition between primary and ter-
tiary creep, when damage rate starts accelerating. The final state of the simulation shows
highly damaged bands, similar to shear bands observed in laboratory experiments. The
thickness and the orientation of these bands depend on the applied stress. This model
thus reproduces many properties of rock creep, which were previously not modeled si-
multaneously.

1. Introduction

Rocks subjected to a constant stress, i.e., in creep condi-
tions, deform at a strain rate variable with time. The study
of the fracture and deformation of rocks under creep is useful
to better understand the behavior of geological structures,
such as volcanoes, landslides, rock massifs, and faults, which
are subjected to a long-term loading.

Three regimes are usually observed during creep exper-
iments: primary creep (decreasing strain rate), secondary
creep (constant strain rate), and, for large enough stress, ter-
tiary creep (increasing strain rate), ending by failure [Scholz ,
1968b; Lockner , 1993a; Boukharov et al., 1995].

During primary creep, the strain rate usually decreases as
a power-law of the time since the stress change. This exper-
imental law was first observed for metals [Andrade, 1910],
and then for many other materials, such as rocks [Lock-
ner , 1993b] and glass/polyester composite materials [Nechad
et al., 2005a]. Andrade’s law, which describes the strain rate
following a stress step, is similar to Omori’s law [Omori ,
1894] for earthquakes, which characterizes the power-law
decay of aftershock rate as a function of the time after the
mainshock. This similarity led several authors to suggest
that aftershocks are triggered by the coseismic static (per-
manent) stress increase induced by the mainshock, and to
apply brittle creep laws to model the temporal behavior of
seismicity [e.g. Scholz , 1968b; Das and Scholz , 1981; Shaw ,
1993; Main, 2000; Perfettini and Avouac, 2004].

The strain rate during secondary creep is nearly constant,
and strongly depends on the applied stress. Lockner [1993b]
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and Ngwenya et al. [2001] found that both an exponential
law and a power law provide a good fit to experimental
measurements of the strain rate during secondary creep, for
different values of the applied stress. The secondary creep
regime is not always clearly observed. In some cases, there
is rather a cross-over between decaying primary creep and
accelerating tertiary creep than a purely stationary regime
[Lockner , 1993b].

Creep experiments on heterogeneous materials have re-
vealed a power-law acceleration of strain rate [Voight ,
1988b, 1989; Guarino et al., 2002; Nechad et al., 2005a, b]
and acoustic emission rate [Guarino et al., 1999, 2002] dur-
ing tertiary creep. Similar power-law accelerations of ei-
ther strain rate or seismic event rate before rupture have
also been observed for natural structures such as landslides
[Saito and Uezawa, 1961; Saito, 1965, 1969; Petley et al.,
2002], volcanoes [Voight , 1988a] or cliff collapse [Amitrano
et al., 2005].

Main [2000] suggested that the precursory acceleration
of seismicity sometimes observed before large earthquakes is
similar to the acceleration of deformation and damage dur-
ing tertiary creep. However, for earthquakes, this precursory
acceleration of seismicity is not systematic, but is only sig-
nificant when averaging over a large number of sequences,
and can be explained by the properties of earthquake trig-
gering [Helmstetter et al., 2003].

Experimental observations, such as an increase of dila-
tancy and hydraulic permeability, a decrease of elastic mod-
ulus, and the recording of acoustic emission, attest that
crack propagation is acting during creep [Scholz , 1972; Lock-
ner and Byerlee, 1980; Kranz et al., 1982; Hirata et al.,
1987; Atkinson, 1991; Lockner , 1993b; Baud and Mered-
ith, 1997; Kawada and Nagahama, 2004]. Different ap-
proaches are used to model the time-dependent deforma-
tion of rocks. Constitutive laws, based on laboratory exper-
iments, provide a relation between strain, stress, and strain
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rate [Voight , 1988b; Lockner , 1998; Shcherbakov and Tur-
cotte, 2003]. These models reproduce the behavior of differ-
ent types of rocks under different loading conditions (creep,
constant stress rate or strain rate). For instance, the consti-
tutive law derived by Lockner [1998] reproduces Andrade’s
law in the primary creep regime, as well as a power-law ac-
celeration of the strain rate during tertiary creep.

Other approaches to model brittle creep often involve
a network of a large number of elements, which interact
by sharing the applied load equally among all intact ele-
ments (fiber bundle models) [Coleman, 1956, 1958; Vujose-
vic and Krajcinovic, 1997; Ciliberto et al., 2001; Politi et al.,
1995; Hidalgo et al., 2002; Turcotte et al., 2003; Pradhan
and Chakrabarti , 2003; Nechad et al., 2005a, b]. Each el-
ement is supposed to represent the mesoscale, much larger
than the size of one crack, and much smaller than the sys-
tem size. These models only provide the temporal evolution
of strain and damage during creep, but cannot model its
spatial distribution (localization before failure), or the size
distribution of damage events. A few models use elastic
long-range interactions [Sornette and Vanneste, 1994], and
can thus model the progressive nucleation, growth and fu-
sion between microcracks, leading to a fractal network of
micro-cracks [Sornette and Vanneste, 1994]. Each element
has either an elastic-brittle [Coleman, 1956, 1958; Vujosevic
and Krajcinovic, 1997; Ciliberto et al., 2001; Politi et al.,
1995; Turcotte et al., 2003; Pradhan and Chakrabarti , 2003;
Sornette and Vanneste, 1994] or viscous-brittle rheology [Hi-
dalgo et al., 2002; Nechad et al., 2005a, b]. The strength of
each element depends on time, and on the stress or strain
on this element. Complexity is introduced in these models
using (i) thermal noise, by introducing a failure probability
per time unit that depends on the stress or strain on each el-
ement, or by adding random fluctuations to the stress [Cole-
man, 1956, 1958; Vujosevic and Krajcinovic, 1997; Ciliberto
et al., 2001; Politi et al., 1995; Turcotte et al., 2003; Pradhan
and Chakrabarti , 2003], and/or (ii) quenched disorder, i.e.,
frozen heterogeneity of the mechanical properties of each el-
ement [Sornette and Vanneste, 1994; Ciliberto et al., 2001;
Politi et al., 1995; Nechad et al., 2005a, b].

At the microscopic scale, other studies modeled the
growth of individual cracks, and the resulting macroscopic
strain [e.g. Lockner , 1993b; Miura et al., 2003]. Lockner
[1993b] derived a law for the temporal evolution of strain
based on reaction rate theory. His model recovers Andrade’s
law for the primary creep regime, and reproduces empirical
laws between strain rate and stress during secondary creep.
But this model cannot produce an accelerating tertiary creep
because it does not include crack interactions.

To our knowledge, no model has attempted to model at
the same time all properties of rocks under creep, including
the temporal evolution of strain and damage during primary,
secondary and tertiary creep, the progressive damage local-
ization before failure, as well as the power-law distribution
of acoustic event sizes.

In this paper, we develop a model for the time-dependent
deformation and damage of rocks. Our model reproduces
both the temporal evolution of damage and its spatial dis-
tribution. It is a 2D finite-element model with an elastic-
brittle rheology. The damage parameter of each element,
which represents the density of fractures in this element,
evolves as a function of the stress history. It can be com-
pared with acoustic emission recorded during creep experi-
ments. We first review experimental results on the influence
of the loading conditions (stress, fluid pressure, tempera-
ture) on the time to failure. We compare two models for the
relation between time to failure and applied stress: expo-
nential and power law functions of the applied stress. These
relations are then used as an input for our numerical model,
in order to characterize the damage of each element as a
function of the load applied to this element.

Our model is an extension of the time-independent model
introduced by Amitrano et al. [1999] and Amitrano [2003].

In this previous model, an element is damaged (its Young’s
modulus decreased) only when its stress reaches a given
threshold. The macroscopic behavior of the system is char-
acterized by a power-law distribution of avalanches, damage
localization, and a transition from brittle to ductile behavior
as a function of the confining pressure or of the friction coef-
ficient. These properties are not included in the elementary
behavior, but emerge from the interaction between elements,
showing that deformation process is a complex phenomenon
[Amitrano, 2004].

This previous model was however unable to explain the
delayed failure of rocks under a stress smaller than its instan-
taneous strength. The introduction of a time-to-failure law
in our new model enable us to reproduce the time evolution
of the strain and acoustic emission observed experimentally
(primary, secondary, and tertiary creep regimes), as well as
the progressive damage localization before failure. Analyti-
cal results are obtained for a simplified version of our model,
which reveal the main mechanisms that control the tempo-
ral evolution of strain and damage. Table 1 summarizes the
main notations used in this paper.

2. Time-to-failure of rocks

When subjected to a constant stress smaller than the in-
stantaneous strength, rocks deform and eventually fail, after
a time delay that depends on the applied stress. In this sec-
tion, we first describe theoretical and empirical models for
the relation between failure time and applied stress. We then
review available experimental results to test which model
best fits the data.

2.1. Delayed failure and sub-critical crack growth

The subcritical growth of microcracks, also called static
fatigue, is suggested to be the main mechanism responsible
for the brittle creep of rocks, and for delayed failure [Scholz ,
1972; Lockner , 1993b]. Laboratory experiments have moni-
tored the subcritical growth of cracks, for a stress intensity
factor K smaller than the critical intensity factor Kc which
corresponds to instantaneous failure [see Atkinson, 1991, for
a review]. Macroscopic failure is thus assumed to occur when
the crack density and/or the crack velocity reaches a thresh-
old.

Subcritical cracking can be explained by the reaction rate
theory, considering that atomic bonds may break due to
thermal fluctuations. This is enhanced by the stress con-
centration at the crack tips [see Atkinson, 1991, p 128-130,
for a more detailed presentation]. Therefore the subcriti-
cal crack growth depends on ambient conditions and is en-
hanced when temperature is increased. Considering an ex-
ponential dependence between stress and activation energy,
Wiederhorn and Bolz [1970] proposed an empirical law for
glasses that describe well a wide range of experimental ob-
servations, including for rocks [Atkinson, 1984].

V = V0 exp
(−W0 + BK

RT

)

(1)

where V is the crack propagation velocity, R is the gas con-
stant, T the temperature, W0 the activation energy, K the
stress intensity factor, B and V0 are constants. The parame-
ters W0, B and V0 depend on the material properties and on
the environmental conditions. The stress intensity factor K
is proportional to σ

√
L, where L is the crack length, with an

additional factor which depends on the crack shape. Consid-
ering a different stress dependence of the chemical reactions
involved in static fatigue, a power law relation between crack
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velocity and intensity factor has been proposed by Charles
[1958] for glass and applied to rocks [e.g. Atkinson, 1984]:

V = V0

(

K

Kc

)q

exp
(−W0

RT

)

. (2)

The exponent q is usually large, i.e, q ≈ 20, so that the
power law form (2) is almost indistinguishable from the ex-
ponential law (1).

The relationships (1) and (2) describe the propagation of
single cracks. They can be used to infer the time-to-failure
of a sample as a function of the loading conditions.

2.2. Models for time to failure

The time-to-failure can be deduced from relations (1) or
(2), using the definition K ∼ σ

√
L, and assuming that

failure occurs when the crack velocity diverges or when it
reaches a given threshold [Wiederhorn and Bolz , 1970; Das
and Scholz , 1981; Shaw , 1993]. This last hypothesis is in
agreement with the experimental observations of Baud and
Meredith [1997], who observed that, for different stress val-
ues, the amount of acoustic emission, the permeability and
the total deformation at failure vary by less than 20%, while
the time-to-failure varies by several orders of magnitude. For
an exponential relation (1), the average time-to-failure is re-
lated to the applied stress by [Wiederhorn and Bolz , 1970;
Das and Scholz , 1981]

tf = t0 exp
(

−b
σ

σ0

)

(3)

where σ is the major stress and σ0 is the instantaneous
strength (i.e., tf = 0 for σ > σ0).

Assuming a power-law relation between V and K given
by (2) , the time to failure is [Charles, 1958]

tf = t′0

(

σ

σ0

)

−b′

(4)

with an exponent b′ = q − 2. The relation (4) has also been
observed experimentally [Cruden, 1974]. In both cases, ex-
ponential (3) and power law (4) models, the constants t0 or
t′0, b or b′, and σ0 depend on rock properties and ambient
conditions [see Scholz , 1972, and references therein].

Although not observed in the laboratory because of time
constraints there should be a lower cut-off for subcritical
crack growth corresponding to the stress level under which
corrosion blunts the crack tips [Cook , 1986; Freiman, 1984].
As no experimental values are available for estimating this
cut-off, we have not included this phenomenon in our model.

2.3. Review of experimental data

The time-to-failure of rocks under creep is suggested em-
pirically to decrease with the stress either exponentially or
as a power law [Scholz , 1968b, 1972; Cruden, 1974; Kranz ,
1980; Kranz et al., 1982; Boukharov et al., 1995; Baud and
Meredith, 1997; Lockner , 1998; Di Giovambattista and Tyup-
kin, 2001; Masuda, 2001; Kawada and Nagahama, 2004].
The same relations are found for other heterogeneous media
such as concrete, glass fiber composite, plexiglass or chip-
board wood panels [e.g. Guarino et al., 1999; Ciliberto et al.,
2001; Purnell et al., 2001; Guarino et al., 2002].

Hereafter we analyze data published in the literature
[Scholz , 1972; Kranz , 1980; Kranz et al., 1982; Baud and
Meredith, 1997; Masuda, 2001] in order to quantify the im-
pact of the loading conditions (stress, confining pressure,
temperature, saturation) on the time-to-failure of samples
loaded under creep conditions (i.e. constant stress be-
low the instantaneous strength σ0). We first test which

time-to-failure relation, exponential (3) or power-law (4),
better explains the data. In order to compare uniaxial
(σ1 > σ2 = σ3 = 0) and triaxial (σ1 > σ2 = σ3 6= 0)
creep tests, the applied major stress σ has been normal-
ized by the instantaneous strength σ0 (maximum value of
the applied stress for short times, i.e., few minutes, failure).
For each data set, we perform a linear least-squares fit for
the exponential law log(tf ) = −bσ/σ0 + log(t0) and for the
power law model log(tf ) = −b′ log(σ/σ0)+log(t′0). For each
fit, we estimate the regression coefficients log(t0) or log(t′0),
and b or b′, and the linear correlation coefficient r between
log(tf ) and σ/σ0 (exponential fit (3)) or log(σ/σ0) (power-
law relation (4)). The results of these fits are presented in
Table 2 and in Figure 1.

We find that, for all data sets, the exponential and power
law fits are equivalent in terms of correlation coefficient.
This small difference between the exponential and power-
law fits can be attributed to both the high exponent values
(b and b′ ranging from 20 to 140) and to the narrow range
of normalized stress (σ/σ0 ranging from 0.7 to 0.98). Un-
der these conditions the two laws cannot be distinguished.
For each law, the exponent b or b′ indicates the stress de-
pendence of the time to failure. A given variation of the
applied stress has a stronger impact on the time-to-failure
for a higher value of b or b′.

Most creep experiments are performed at room conditions
(no confining pressure, temperature near 20◦C, water satu-
ration corresponding to the ambient air), but a few authors
have investigated the impact of environmental conditions on
the time to failure. They found that the time-to-failure in-
creases when increasing the confining pressure [Kranz , 1980;
Baud and Meredith, 1997; Lockner , 1998], decreasing the
temperature [Scholz , 1972; Kranz et al., 1982] or the water
saturation [Scholz , 1972; Kranz et al., 1982; Masuda, 2001].
Scholz [1972] observed experimentally the relation (3) for
single-crystal quartz samples broken in uniaxial compres-
sion. He found that the characteristic time t0 in (3) de-
creases with the water concentration as t0 ∼ CH2O

−α, and
decreases with the temperature as t0 ∼ exp(W0/RT ). These
results suggest that static fatigue of quartz can be explained
by corrosion microcracking. The exponent b in (3) did not
show any significant change with the water concentration
or the temperature, though not enough experiments were
performed to verify the independence of b and T . The b-
exponent was only sensitive to the microstructure, with a
larger b-value for samples loaded along the c-axis than for
the a-axis (see Table 1).

The triaxial tests of Kranz [1980] suggest an increase of
b and t0 with the confining pressure σ3. But the number of
samples in these experiments is very small, and more exper-
iments should be done to confirm this result. This can be
related to the impact of the confining pressure which tends
to decrease the stress intensity factor K. Another explana-
tion is that cracks close when increasing the confining pres-
sure, so that part of the mechanical energy is consumed by
friction. The experiments of Kranz et al. [1982] give slightly
larger values of b and t0 for the dry sample than for the
wet sample. Kranz et al. [1982] also found a decrease of b
and t0 with the temperature, as expected for stress-corrosion
cracking (1).

In this paper, we will consider only the effect of stress
on the time-to-failure, using expressions (3) or (4). The
influence of other parameters, such as temperature, water
saturation and confining pressure, can be accounted for by
changing the parameters t0, b and b′. For geological ob-
jects, such as volcanoes, landslides or faults, the pressure,
the temperature and the water content may be very vari-
able, e.g., as a function of depth, or change with time. We
thus need to account for this variability when modeling the
deformation and failure of geological objects, by changing
the parameters of the time-to-failure law. For instance, it
is well established that landslides movement accelerates in
wet condition [e.g. Caine, 1980]. Fluids decrease the effec-
tive normal stress, thus reducing the shear strength of the
rock mass. But fluids also increase the strain rate and de-
crease the time to failure due to chemical reactions, as shown
in the creep experiments of Scholz [1972].
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3. Description of the numerical model

The model we develop here is based on the progressive
damage model of Amitrano et al. [1999]. This model simu-
lates a macroscopic behavior that ranges from brittle to duc-
tile, associated to localized or diffuse damage respectively.
This model also describes the evolution of acoustic emission
(size and location of rupture avalanches) during the pro-
gressive damage process. It allows us to simulate a large
range of observations, from the laboratory scale [Amitrano,
2003] to the Earth’s crust scale [Sue et al., 2002; Amitrano,
2004], but is restricted to the time-independent behavior of
rocks, i.e., short times. We first summarize the main fea-
tures of this model, and then focus on incorporating time
dependence in the model.

3.1. Time-independent model

The system is discretized using a 2D finite element
method with plane strain assumption. The model is based
on progressive isotropic elastic damage. When the stress on
an element exceeds a damage threshold, its elastic modulus
Ei is modified according to

Ei(n + 1) = Ei(n)(1 − D0) , (5)

where D0 is a constant damage parameter (D0 = 0.1 in our
simulation). After n damage events, the effective modulus
Ei(n) of element i is given by

Ei(n) = (1 − D0)
n Ei,0 = (1 − Di(n)) Ei,0 , (6)

where Ei,0 is the initial Young’s modulus, and the damage
parameter is given by Di(n) = 1 − (1− D0)

n. This relation
(6) describes the damage of a volume much larger than the
defect size (i.e., cracks). The damage parameter Di(n) is
related to crack density [see Kemeny and Cook , 1986, for
a review]. Because of elastic interactions, stress redistrib-
ution around a damaged element can induce an avalanche
of damage events. The total number of damaged elements
during a single loading step is the avalanche size, which is
comparable to the size of an acoustic emission in laboratory
experiments.

The Mohr-Coulomb criterion is used as a damage thresh-
old. The instantaneous strength σ0 is determined for each
element by

σ0 = σ3

1 + sin φ

1 − sin φ
+

2C cos φ

1 − sin φ
, (7)

where C is the internal cohesion, φ the internal friction an-
gle, and σ3 is the minor stress on the element. We choose
this criterion because of its simplicity, and because it al-
lows to check independently the influence of each parame-
ter (C, φ, and normal stress σ3). Without time depen-
dence, an avalanche occurs only when the stress is increased,
by increasing the vertical displacement of the upper model
boundary.

In the absence of heterogeneity, the behavior of the model
is entirely homogenous, i.e., no damage localization occurs,
and the local behavior is replicated at the macroscopic scale.
It is necessary to introduce heterogeneity to obtain a macro-
scopic behavior different from those of the elements. In or-
der to model material heterogeneity, the cohesion of each
element C is drawn randomly from a uniform distribution
in the range C1 − C2 (25-50 MPa). Due to this heterogene-
ity, the stress on each element is different from the macro-
scopic stress imposed at the upper boundary of the model.
The other mechanical parameters are fixed (Young’s modu-
lus E=50 GPa, Poisson coefficient ν=0.25, internal friction
coefficient tan φ=0.5).

According to this mesoscale approach, the model neglects
the details of microcracking processes at small scale. It is

well established that at the grain size the deformation is
dominated by tensile cracks orientated parallel to σ1, partic-
ularly visible through the phenomenon of dilatancy [Scholz ,
1968a; Lockner et al., 1991; Moore and Lockner , 1995; Ver-
milye and Scholz , 1998; Katz and Reches, 2004]. Small scale
tensile cracks are simulated in our model by decreasing the
Young’s modulus of an element, to simulate the effect of in-
creasing micro-crack density. This mesoscale approach may
be used as an alternative [Amitrano, 2006] to the micro-
scopic approach, dedicated to the study of fracture propa-
gation [e.g. Lockner and Madden, 1991a, b; Reches and Lock-
ner , 1994], and to the macroscopic approach based on con-
stitutive laws [e.g. Lockner , 1998; Kawada and Nagahama,
2004]. This allow us to investigate the collective behavior of
interacting elements and the emergence of a complex macro-
scopic behaviour.

3.2. Time-dependent model

In order to simulate the time-dependent behavior of rocks,
we introduce a time-to-failure law to model the failure by
static fatigue of each element i when subjected to a constant
stress σi (major stress on this element) smaller than its in-
stantaneous strength σ0,i. We use either the exponential (3)
or the power-law (4) relation between the time-to-failure of
each element and its normalized stress σi/σ0,i. The sys-
tem is loaded by imposing a constant stress σ on its up-
per boundary. The simulation stops when the macroscopic
strain reaches a threshold ǫc, as observed experimentally
[e.g. Baud and Meredith, 1997; Kranz et al., 1982]. We use
ǫc = 0.03.

An element fails either when the time t is equal to its
failure time ti, or, during an avalanche, when the stress σi

on this element reaches the rupture criterion σ0,i (7). The
damage parameter, the stress, the strength, and the failure
times of all elements are updated after each failure.

We characterize the state of each element by its failure
time ti, and by a parameter pi that represents the proportion
of consumed lifetime. This allows us to estimate the remain-
ing time-to-failure for an element taking into account its
stress history. The parameter ti gives the failure time of this
element, measured from the beginning of the simulation, in
the absence of interactions between elements. Initially, the
failure time of the ith element is given by the time-to-failure
law, i.e., ti(0) = tf (σi, σ0,i), and the proportion of consumed
lifetime is pi(0) = 0. The time-to-failure tf (σi, σ0,i) is given
either by the exponential (3) or the power-law (4) relation.

After each damage event, we update the damage, the
stress, and the strength of each element, and then its con-
sumed lifetime and its failure time. If element i was not
broken during the first event at time t(1), the proportion of
consumed lifetime is simply given by pi(1) = t1/ti(0). For
all elements damaged during the avalanche, the proportion
of consumed lifetime is reset to zero pi(1) = 0. The new fail-
ure time of each element, measured from the origine t = 0,
is then given by

ti(1) = t1 + tf (σi, σ0,i) (1 − pi(1)) . (8)

After the nth avalanche, at time t(n), the proportion of
consumed lifetime for elements that are not damaged during
the nth avalanche is updated according to

pi(n) = pi(n − 1) +
t(n) − t(n − 1)

ti(n − 1) − t(n − 1)
. (9)

For all elements damaged during the avalanche, the propor-
tion of consumed lifetime is reset to zero:

pi(n) = 0 (10)
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Extrapolating (8) to n > 1, the failure time after the nth

avalanche is given by

ti(n) = t(n) + tf (σi, σ0,i) (1 − pi(n)) , (11)

This approach (11) and (9) was experimentally tested to es-
timate the time-to-failure of samples subjected to a stress
increase [Guarino et al., 1999] and gave satisfactory results.
In expression (11), the time-to-failure is independent of dam-
age. In order to take into account experimental observations
showing that the time-to-failure decreases linearly with the
amount of damage [e.g. Ray et al., 1999], we introduce the
damage factor (1 − Di(n)) in the previous expression (11)

ti(n) = tn + tf (σi, σ0,i) (1 − pi(n)) (1 − Di(n)) , (12)

where Di(n) defined by (6) is the total damage parameter
of element i after n damage events.

We have tested both laws (11) and (12) in our numerical
simulations. Both laws give similar results in the primary
creep regime, but the introduction of the damage parameter
in (12) is necessary to obtain a power-law acceleration in
the tertiary creep regime. In comparison, the choice of the
exponential (3) or the power-law (4) time-to-failure relation
has little influence in the simulations.

4. Results of the numerical simulations

4.1. Temporal evolution of strain and damage

Figure 2 shows the typical evolution of strain, number
of damage events, and energy release up to failure, for two
simulations with σ/σ0=0.80 and b=40 or b′=40. We ob-
tain similar results for the exponential (3) and power-law
(4) time-to-failure laws. For all values of σ and b or b′, and
when decreasing the time-to-failure of each element with
damage according to (12), we observe both primary and ter-
tiary creep regimes, characterized respectively by decreasing
and increasing strain rate. We observe a similar behavior for
the number of damage events and for the cumulative energy
release. The secondary creep regime does not appear in the
simulations (no stationary regime), but may be rather de-
fined as the transition between primary and tertiary creep
corresponding to the minima of the strain rate. Figure 3
shows the rate of damage events, the strain rate, and the
rate of energy release as a function of time (normalized by
the failure time tc of each simulation), for different values of
the applied stress.

During primary creep, both the strain rate ǫ̇(t), the rate
of damage events ṅ(t) and the energy release rate Ẇ (t) de-
cay with time approximately as a power-law, equivalent to
Omori’s law [Omori , 1894] for earthquakes, and known as
Andrade’s law [Andrade, 1910] for the strain rate in creep
experiments:

ǫ̇(t) ∼ 1

tpǫ

(13)

ṅ(t) ∼ 1

tpn

(14)

Ẇ (t) ∼ 1

tpW

(15)

with both exponents pǫ, pn and pW , slightly smaller than 1
(see Figure 3). Experimentally, the exponent pn was found
equal to 0.5 ± 0.25 by Scholz [1972], for quartz samples.
Andrade [1910] suggested an exponent pǫ = 2/3 for met-
als. This value has been reproduced by numerical simula-
tions based on interacting dislocations [Miguel et al., 2002].
Nechad et al. [2005a] reported average values pǫ = 0.86 and
pn = 0.63, estimated for 15 samples of fiberglass composites
loaded under constant tension.

After the primary creep regime, the strain rate and the
damage rate increase due to interactions between elements

and due to increasing damage. However, this tertiary creep
regime is observed only when using expression (12) for the
failure time of each element as a function of damage, stress
and strength. Otherwise, if the time-to-failure does not de-
crease with damage, the simulation reaches a constant sta-
tionary regime at large times, characterized by a constant
strain rate and event rate. These results are understood
qualitatively by the analytical study presented in section 5.

In the model, when using expression (12) for the failure
time, we observe a power-law acceleration of the strain rate
ǫ̇, of the rate of damage events ṅ, and of the energy release
rate Ẇ

ǫ̇(t) ∼ 1

(tc − t)p′

ǫ

(16)

ṅ(t) ∼ 1

(tc − t)p′

n

(17)

Ẇ (t) ∼ 1

(tc − t)p′

W

(18)

The critical time tc in (16), (17) and (18) is the time of the
end of the simulation, when the strain ǫ reaches the thresh-
old ǫc. The exponent p′

n is smaller than 1, typically p′

n ≈ 0.8.
The strain rate and energy release accelerate faster than
the rate of damage events, with exponents p′

W ≈ p′

ǫ ≈ 1.3.
These exponents do not depend on the applied stress (ex-
cept for very large stress σ/σ0 = 0.95), and on b or b′ (as
long as b ≫ 1 or b′ ≫ 1 as observed experimentally).

The macroscopic failure time tc has the same dependence
with the applied stress as the time-to-failure of each element
(given by (3) or (4)). We find at the macroscopic level the
same law as we used as input at the scale of each element.

The curves in Figure 3 show that, when normalizing time
by tc, the curves of ǫ̇(t), ṅ(t) or Ẇ (t) for different values
of the applied stress are almost superposed. In particular,
the transition time tm between primary and tertiary creep
(given by the minima of ǫ̇(t)) is about half the failure time,
i.e, tm ≈ tc/2. A similar result was previously obtained
experimentally by Nechad et al. [2005a] for creep tests on
glass-fiber composites, who observed tm ≈ 2/3 tc, and was
also observed in a creep model of visco-elastic fibers [Nechad
et al., 2005a].

4.2. Distribution of event sizes

Figure 4 shows the energy distribution P (∆W, t) and its
evolution with time. For small stress σ/σ0 = 0.25, the in-
stantaneous energy distribution is very narrow, with an av-
erage value and a standard deviation increasing with time.
When integrating over the complete simulation, the event
size distribution is close to a power-law P (∆W ) ∼ ∆W−1−β ,
with β ≈ 1, larger than the value β = 2/3 commonly ob-
served for the distribution of earthquakes seismic moments
[Kagan, 1999]. For larger stresses, the event size distribu-
tion is almost independent of time. There is only a small
increase of the fraction of large events before tc. However,
the absence of a clear acceleration for large stress may be
due to the small number of events observed very close to fail-
ure. Figure 5 shows the evolution of the median energy of
damage events as a function of the time before failure, t−tc.
For all values of the stress, the typical energy increases as a
power-law before failure, with an exponent around 0.3. We
observed similar results if we consider the average energy
instead of the median, with larger fluctuations. Figure 6
shows the cumulative energy distribution, for all events in
the simulation, for different stress values. For small stress
σ/σ0 < 0.9, P (∆W ) is a power-law for small energies with
an exponential fall-off, which progressively vanishes when
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stress increases. For larger stress, P (∆W ) shows a small
excess of large events relative to the power-law distribution
observed for small ∆W .

4.3. Spatial distribution of damage

Figure 7 shows the final damage state Di(n) defined by
(6), for different values of the applied stress. We see that
damage becomes more localized as stress increases. The
thickness of the bands decreases with the applied stress. For
σ/σ0 = 0.5, it is about the size of 10 elements (for a sys-
tem of 32 by 16 elements). For larger stress σ/σ0 = 0.95,
the width of the damage bands is only one element. The
orientation of the shear bands relative to the major stress
also depends on the applied stress, from ≈ 45o for small
stress σ/σ0 = 0.5, down to ≈ 30o for larger stresses. For
large stress (thin bands), the orientation and the width of
the shear bands are constrained by the meshing structure.

In order to quantify the spatial structure of the dam-
age, we have calculated the directional spatial correlogram
(DSC) of the total damage Di(n) = 1 − Ei(n)/Ei,0 (where
n is the number of damage events of element i). For a given
direction ~d, the DSC is calculated as the autocorrelation
function along this direction, i.e., the correlation between
the damage value observed at point x and at point x′ sepa-
rated by a distance λ along direction ~d (at an angle α rela-
tive to the loading direction). The correlation is calculated
as the covariance between D(~x) and D(~x + λ~d) divided by
the variance of D(~x)

DSC(α, λ) = r
(

D(~x), D(~x + λ~d)
)

=
var

(

D(~x), D(~x + λ~d)
)

var (D(~x))
. (19)

We have calculated the DSC as a function of the distance
λ for all values of α between 0 and 180◦, with a step of 5◦.
This analysis reveals the spatial correlation of the damage
and its anisotropy.

The direction of the bands is characterized by a long range
correlation, and the perpendicular direction by a correlation
length equivalent to the band thickness.

For each direction α, the DSC is maximum for short
distances, and then decreases more or less continuously for
increasing λ, as shown in Figure 8, for the directions paral-
lel and perpendicular to the bands. Figure 8 shows that the
correlation length is almost zero at short times, and then
increases with time. For large distances (larger than the
band width), DSC(α, λ) is maximum in the direction of the
damage bands.

In order to quantify the damage anisotropy, we have cal-
culated the difference between the correlogram in the direc-
tion α, and its perpendicular direction, integrated over all
distances λ.

A(α) =

λmax
∫

0

[DSC(α, λ) − DSC(α + π/2, λ)] dλ . (20)

If the damage is anisotropic, the coefficient A is large in
the direction of the damage band, as the difference between
DSC in this direction and the perpendicular is maximal.

We can identify in Figure 9 the band direction αband =
30o for which A(α) is maximum. Figure 9 shows A(α) for
different times during the simulation. Each curve corre-
sponds to a constant number n = 800 of events. Damage
is initially isotropic (A(α) is near zero and is independent
of α), and becomes anisotropic during tertiary creep. The
time t/tc ≈ 0.5 when anisotropy appears coincides with the
transition between primary and tertiary creep, when strain
rate and damage rate start increasing.

5. Analytical study

In this section, analytical results are obtained for a sim-
plified version of our model, which reveal the main mecha-
nisms that control the temporal evolution of strain, energy
and damage.

5.1. Relation between damage and strain

Considering a uniaxial stress state which can be described
by the scalar value of the major stress σ (a similar analy-
sis can be performed for a tensorial description of the stress
state), we can estimate the strain variation induced by a
single damage event. We can then derive an approximate
analytical relation between the strain rate ǫ̇(t) and the rate
of damage events ṅ(t) by assuming that

• the average number s of elements which breaks during
each avalanche does not change with time (this is not always
the case in the numerical simulations);

• before the avalanche, the Young’s modulus of an ele-
ment i that breaks is equal to the average Young’s modulus
of the system Ei =< E >= E;

• all elements have the same major stress, equal to the
applied load σ, and the same axial deformation ǫ = Eσ.

Under these assumptions, the new Young’s modulus of a
damaged element after an avalanche is E′

i = Ei (1 − D0) =
E (1 − D0). The new average Young’s modulus E′ of the
system of N elements after an avalanche of size s is

E′ =
E (N − s)

N
+

E s (1 − D0)

N
= E

N − s D0

N
. (21)

The deformation of the system after the avalanche is

ǫ′ =
σ

E′
=

σ

E

N

N − s D0

= ǫ
sN

N − s D0

. (22)

We can write the strain rate ǫ̇(t) as

ǫ̇(t) =
ǫ′ − ǫ

∆t
=

ǫ

∆t

D0

N − s D0

(23)

where ∆t is the inter-event time at time t.
We can now compute the rate of damage events at time

t as ṅ(t) = 1/∆t. Using (23), we get the relation between
strain rate and damage rate:

ṅ(t) =
ǫ̇(t)

ǫ(t)

N − s D0

s D0

(24)

5.2. Relation between strain and released energy

The energy release induced by an avalanche of size s is
given by the change in elastic energy (assuming a constant
uniform stress σ on all elements)

∆W =
1

2
∆(σ ǫ) =

1

2
σ ∆ǫ . (25)

Using expression (22), we obtain

∆W =
σ ǫ

2

s D0

N − s D0

. (26)

The fact that energy release is proportional to strain ex-
plains why the exponents for strain rate and energy rate are
very similar in our simulations, both during primary and ter-
tiary creep. Differences between them can be related to the
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assumption of constant stress conditions, which is verified
only on average. Note that both strain change and energy
release increase as the Young’s modulus E decreases (i.e.,
as damage increases). The relation between the energy re-
lease rate and the strain rate also depends on the avalanche
size s. At the beginning of the simulation, during primary
creep, the mean size of damage events is essentially equal
to one. The energy rate is thus proportional to strain rate,
thus pǫ = pW . During tertiary creep, the mean avalanche
size increases, thus pW differs from pǫ.

5.3. Primary creep

We derive here an approximate analytical solution for the
evolution of the damage rate, the strain rate, and the energy
release rate during primary creep. In our model, interactions
between elements are relatively weak at short times, so that
the stress σi of each element is close to the externally ap-
plied stress σ. We consider only strength heterogeneity. The
time at which each element first fails is thus close to its ini-
tial time-to-failure ti(0) = tf (σ, σ0,i). Assuming that no ele-
ment has ruptured more than once, the damage rate ṅ in this
regime is simply proportional to the probability distribution
function (pdf) of tf (σ, σ0,i). The variability of tf (σ, σ0,i) re-
sults from the initial heterogeneity of the strength σ0.

Therefore, the damage rate in the primary creep regime
is approximately equal to:

ṅ(t) =
dN

dtf (σ, σ0)
=

dN

dσ0

dσ0

dtf (σ, σ0)
(27)

Initially, the strength σ0 has a uniform distribution between
σ01

and σ02
(values of the strength estimated using the

Coulomb criterion (7) for C = C1 and C = C2 respectively).
Therefore, the first factor in (27) is dN/dσ0 = N/(σ02

−σ01
).

The minimum time-to-failure is tmin = tf (σ, σ01
) (time-to-

failure corresponding to the minimum value of the cohesion
C1).

If the time-to-failure has the exponential dependence with
the normalized stress (3), then

dtf (σ, σ0)

dσ0

=
t0σb

σ2
0

exp(−b
σ

σ0

) =
[t log(t/t0)]

2

bσ
, (28)

where t = tf (σ, σ0). Expressions (27) and (28) give, for
t ≥ tmin

ṅ(t) =
Nσb

(σ02
− σ01

)t [log(t/t0)]
2

(29)

For t ≪ t0, this function (29) looks like a power law (14)
with an apparent exponent pn ≤ 1 decreasing slowly with
time.

For a power-law relation between time-to-failure and
strength (4), expression (27) gives, for t > tmin

ṅ(t) =
Nσ

(σ02
− σ01

)b t0(t/t0)1−1/b
(30)

For b ≫ 1, the damage rate has a power law decay with an
exponent pn = 1 − 1/b slightly smaller than 1.

In both cases (29) and (30), the effective power-law de-
cay of the damage rate during primary creep arises from
the coupling between a uniform distribution of strength and
the sharp increase of the time-to-failure with strength. The
large values of the damage rate at short times correspond to
the elements with the smallest cohesion. The elements with
a larger strength have a much longer time-to-failure. The
mechanism responsible for the power-law decay of the dam-
age rate in our model is similar to previous models of creep or

of aftershocks [Scholz , 1968b; Das and Scholz , 1981; Shaw ,
1993], except that these studies used a constant strength and
a uniform distribution of stress, while the initial stress in our
model is constant and only the strength is heterogeneous.

Expressions (29) and (30) are valid only when each ele-
ment has ruptured only once, i.e., when time is small com-
pared to the average time-to-failure tf (σ, σ0). This is the
case during the beginning of the primary creep regime if the
strength is very heterogenous (σ0,2 ≫ σ0,1) and for b ≫ 1
or b′ ≫ 1, so that a small fluctuations of σ0 gives a large
variation of tf (σ, σ0). Also, expressions (29) and (30) are
valid as long as interactions between elements are negligi-
ble, when the strain is close to its initial value. Therefore
these approximate solutions are better (fit the simulations
over a larger time interval) if the damage parameter is small
D0 ≪ 1.

We can also describe the evolution of strain and energy
release during primary creep by using the relation (24) be-
tween strain and damage rate derived above. For the expo-
nential time-to-failure law (3), the solution of the differential
equation (24), for the damage rate given by (29) is

ǫ(t) =
σ

E0

exp [−a/ log(t/t0)] (31)

ǫ̇(t) =
aσ

E0

exp [−a/ log(t/t0)]

t [log(t/t0)]
2

(32)

a =
(

sD0

N − sD0

)

(

Nσb

σ02
− σ01

)

. (33)

For the power-law time-to-failure relation (4), we obtain
using (24) and (30)

ǫ(t) =
σ

E0

exp

[

a

b

(

t

t0

)1/b
]

(34)

ǫ̇(t) =
σa

E0t0b2
exp

[

a

b

(

t

t0

)1/b
]

(

t0
t

)1−1/b

(35)

In both cases, exponential (32) and power-law (35), the
strain rate decays as a power-law with an exponent pǫ ≈ 1
if b or b′ ≫ 1,. The strain increases slowly with time at
short times, in agreement with our assumption that interac-
tions between elements are negligible during the early pri-
mary creep regime, as shown by the study of spatial damage
structure (section 4.3). This result justifies our assumption
that ǫ(t) is constant, equal to the initial elastic strain σ/E0,
in order to derive the approximate relations for the damage
rate (29,30).

5.4. Tertiary creep regime

After the primary creep regime, the strain rate and the
damage rate increase due to interactions between elements
and due to increasing damage. The time-to-failure of each
element decreases on average with time because:

• the stress on undamaged elements increases on average
after an avalanche, therefore the failure time estimated from
(4) or (3) decreases;

• the time-to-failure of undamaged elements also de-
creases with time because the fraction of consumed failure
time pi(n) in (9) increases with time;

• for damaged elements, the time-to-failure decreases
proportionally to the damage ti(n) − t(n) ∼ (1 − D0)

n, if
equation (12) is used to update the time-to-failure of dam-
aged elements.

We can explain the power-law singularity of the damage
rate (17) in the tertiary creep regime in the case where the
time-to-failure decreases with the damage (12). In this case,
the main mechanism leading to the power-law acceleration
of the damage rate is the decrease of the time-to-failure be-
tween 2 damage events. In this case, we can simplify the
model by
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• neglecting interactions between events, assuming that
the stress on all elements does not change with time and
is equal to the externally applied stress σi = σ. Therefore
the time-to-failure of element i changes only when it is dam-
aged, i.e., when t = ti(n), where n is the number of damage
events of element i. And only one element breaks during
each avalanche (s = 1).

• neglecting heterogeneity of strength, i.e., assuming σ0,i

is equal to the average strength σ0 for all elements, in order
to compute the average failure time of an element. In the
numerical simulations, the elements that break have on aver-
age a strength smaller that the average strength σ0 (shorter
time-to-failure). Thus assuming σ0,i = σ0 overestimates the
time tc of the global failure. But this should not affect the
temporal behavior of the damage rate derived below. Be-
cause in the tertiary creep regime all elements have been
damaged several times, and because the strength is redrawn
randomly after each damage event, assuming that σ0,i is
constant is not too unrealistic, and allows us to derive sim-
ple analytical solutions.

Under these assumptions, and using (12) recursively for
all damage events, the time-to-failure ti(n) of element i after
the nth damage event is given by

ti(n) = ti(n − 1) + tf (σ, σ0) (1 − D0)
n

= ti(0) + tf (σ, σ0)

n
∑

j=1

(1 − D0)
j

= ti(0) + tf (σ, σ0) (1 − D0)

n−1
∑

j=0

(1 − D0)
j

= ti(0) + tf (σ, σ0) (1 − D0)
1 − (1 − D0)

n

D0

= tf (σ, σ0)
1 − (1 − D0)

n+1

D0

(36)

The time between 2 damage events of element i is given by,
using (36),

∆t = ti(n + 1) − ti(n)

= tf (σ, σ0) (1 − D0)
n+1

= tf (σ, σ0) − D0 ti(n) (37)

The rate of damage at time t = ti(n) for the system of N
independent elements is given by

ṅ(t) =
N

∆t
=

N

tf (σ, σ0) − D0t
=

N

D0(tc − t)
, (38)

where tc is the time of the macroscopic failure of the system,
corresponding to the singularity of damage and deformation,
which is given by

tc =
tf (σ, σ0)

D0

. (39)

Expression (38) describes a power-law singularity of the
damage rate, similar to the numerical simulations (17) with
p′

n = 1.
In this simplified model, the strain at time t = ti(n) obeys

ǫ(t) =
σ

E
=

σ

E0(1 − D0)n

=
σ

E0

1 − D0

1 − D0 t/tf (σ, σ0)

=
σ

E0D0

tf (σ, σ0)

(tc − t)
(40)

and the strain rate is

ǫ̇(t) =
σ

E0D0

tf (σ, σ0)

(tc − t)2
(41)

corresponding to a value p′

ǫ = 2 in (16). This analysis ex-
plains qualitatively the power-law singularity of the strain
rate and of the rate of damage events found in the simula-
tion, and the fact that p′

ǫ > p′

n (strain rate accelerates faster
than damage rate).

These results suggest that interactions between elements
are not essential to obtain a power-law acceleration of dam-
age and strain during tertiary creep. Indeed, our simple
analytical model described above, which neglects interac-
tions, produces a power-law acceleration (41). But the val-
ues p′

n = 1 and p′

ǫ = 2 in our analytical study are larger than
the values p′

n ≈ 0.8 and p′

ǫ ≈ 1.3 observed in the numerical
simulations. Expressions (40), (41), and (38) are consistent
(in the limit where N ≫ D0) with the relation between the
damage rate, strain and strain rate given in (24).

If the time-to-failure of each element does not depend
on damage, i.e., if (11) is used to update the time-to-
failure of broken elements, then the recurrence time is con-
stant ∆t = tf (σ, σ0). The damage rate is also constant
ṅ(t) = N/tf (σ, σ0). In contrast, in the numerical simula-
tions we found that the damage rate increases linearly with
time in this case. For the strain rate, relation (24) predicts
an exponential increase of the strain and strain rate (assum-
ing N ≫ D0), as observed in the numerical simulations

ǫ(t) =
σ

E0

exp

(

D0 t

tf (σ, σ0)

)

(42)

ǫ̇(t) =
σ

E0

D0

tf (σ, σ0)
exp

(

D0 t

tf (σ, σ0)

)

. (43)

In both cases, we found that the analytical expressions
for the damage rate and for the strain rate predict an in-
crease during tertiary creep that is slower than in the nu-
merical simulations. The main factor that can explain these
differences are elastic interactions between elements. Elastic
interactions produce a spatial correlation of the stress, dam-
age, and strength fields. As a consequence, the mean size of
damage events increases with time, because avalanches can
more easily propagate at larger distances. In contrast, our
simple analytical study assumes a constant avalanche size.
The power-law increase of the average event size with time
may thus explain why the strain and damage acceleration
during tertiary creep is faster (larger exponents p′) in our
simulations than in this simple analytical study.

6. Discussion

We have first analyzed experimental data to character-
ize the relation between the applied stress and the time-to-
failure. We found that the exponential (3) and the power-
law (4) relations cannot be distinguished from observations
of creep experiments; both laws fit the data equally well. In
both cases, the exponent b and b′ are very large, showing
that a small stress change produces a huge variation of the
time-to-failure. Other factors, such as temperature or water
saturation, also strongly influence the time-to-failure. These
factors should be taken into account when modeling geolog-
ical objects. The impact of the b-exponent in the numerical
simulations is weak and only changes the time scale, i.e., the
time of macroscopic failure.

In order to model the time-dependent damage of rocks,
we use these experimental laws at the scale of each element
to estimate its time-to-failure as a function of its stress his-
tory. A broken element is damaged by decreasing its Young’s
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modulus. The scale of each element is supposed to be much
larger than the crack size. Elastic interactions between el-
ements and heterogeneity of the mechanical properties lead
to the emergence of a complex macroscopic behavior, which
is different from the behavior of individual elements. The
major interest of this model is to simulate at the same time
the temporal evolution of damage and strain, the distribu-
tion of acoustic emission events, and the progressive damage
localization.

In our model, we find that the time of macroscopic fail-
ure is proportional to the time-to-failure used as input at the
scale of each element. The transition time between primary
and tertiary creep is also proportional to the time of macro-
scopic failure. This suggests that the evolution of strain rate
or acoustic emission during primary and secondary creep
can be used to forecast the time of macroscopic failure of an
object. A similar conclusion was reached by Scholz [1972],
based on creep experiments, who suggested that ”microfrac-
turing appears to be completely diagnostic of static fatigue,
since the rate of microfracturing and the average time-to-
failure behave similarly”, i.e., the only characteristic time
for the evolution of the damage rate during creep is the time
of macroscopic failure. This is in agreement with the exper-
imental and analytical results of Nechad et al. [2005a] for
heterogeneous material: the macroscopic failure time was
proportional to the duration of the primary creep regime.

During primary creep, we observe a power-law decrease of
the rate of strain, damage event and released energy during
primary creep, with an exponent ≈ 0.8. This value is com-
parable to the one observed for metal’s [Andrade, 1910], for
glass/polyester composite materials [Nechad et al., 2005a],
and for earthquake aftershocks [Omori , 1894]. In our model,
the power-law decay of damage, strain and energy rate at
short times can be explained by the increase of the time-
to-failure with the strength coupled with the heterogeneity
of the initial strength of each element. A few other models
have also reproduced this law for the relaxation of strain rate
during primary creep [Lockner , 1993b, 1998; Nechad et al.,
2005a]. In our simulations, the exponents pn, pW and pǫ are
weakly sensitive to the applied stress and to the time-to-
failure law used as input. During this regime, the damage is
spatially non-correlated in our simulations (the correlation
length is zero).

The secondary creep regime does not appear clearly in
the numerical simulations, and can be rather defined as the
transition between primary and tertiary creep, correspond-
ing to the minimum value of the strain rate. Note that
for very low stress values, one should take into account the
self-healing and blunting of cracks, which may prevent sub-
critical crack growth. Therefore, there may be a minimum
value of the applied stress under which a rock never fail, but
continue to deform at a constant rate, or eventually stops
to deform. In contrast, our model predicts that the system
will always fail (reach the critical strain ǫc) in finite time,
even for a very small applied stress.

The tertiary creep regime is characterized by an increase
of the strain rate, the energy rate, and the damage rate
ending by macroscopic failure. This acceleration follows a
power-law as a function of the remaining time before failure
if the time-to-failure of each element increases with damage
according to (12). Otherwise, the acceleration of the strain
and damage is slower, roughly linear with time for the rate
of damage events, and exponential for the strain rate. The
power-law acceleration of damage in our model is similar
to the experiments of Guarino et al. [e.g. 2002] and Nechad
et al. [2005a]. At a larger scale, the same behavior was ob-
served for the increase in micro-seismicity recorded before a
cliff collapse [Amitrano et al., 2005]. They observed a power
law acceleration of both the event number and the seismic
energy release until the collapse of the chalk cliff.

Damage localization emerges during tertiary creep, with
the appearance of a non-zero correlation length (Figures 8

and 9). The spatial correlation length further increases dur-
ing tertiary creep, in agreement with the critical point the-
ory, which predicts a power-law divergence of the correlation
length [Stanley , 1971]. The tertiary creep ends with the
macroscopic failure of the model, i.e., the complete damage
localization. These results are in agreement with laboratory
creep experiment showing that damage becomes localized
before failure [Hirata et al., 1987]. The damage localization
is often characterized by a decrease of the fractal dimension
of the cloud of damage events [e.g. Lockner , 1993a; Hirata
et al., 1987]. The limited size of our numerical model does
not allow us to calculate the fractal dimension.

The final structure of the damage systematically shows a
shear band (Figure 7). The thickness of the bands and their
orientation relative to the applied stress decrease with the
applied stress. To our knowledge, this relationship between
the thickness of the shear band and the applied stress has
not yet been observed in creep experiments. This could be
explained by the scarcity of creep tests with very low applied
stress, i.e., σ/σ0 < 0.5, because of technical difficulties for
measuring low strain rates over times as long as several years
[Berest et al., 2005]. Previous experimental studies have ob-
served a damage localization along shear bands similar to
our model [Jaeger and Cook , 1979; Kranz , 1983; Ramsey and
Chester , 2004]. These studies observed a transition between
a brittle (localized damage) to a ductile (diffuse deforma-
tion) behavior as the confining pressure increases. Amitrano
et al. [1999] reproduced this localized/diffuse transition with
the time-independent version of our model. In this model,
the thickness of the band increases and its orientation rela-
tively to the major stress decreases as the confining pressure
increases. This transition between a localized and diffuse be-
havior can be explained by the decrease of the slope of the
failure criterion (friction coefficient) as the confining pres-
sure increases. The change of the friction coefficient modifies
the geometry of the damage zone after each damage event,
and thus the damage localization [Amitrano et al., 1999;
Amitrano, 2003]). This change of behavior with the confin-
ing pressure cannot explain the localized/diffuse transition
in our model because the failure criterion is kept constant
and no confining pressure is applied. Further investigations
are needed to understand this new kind of diffuse/localized
transition as a function of the applied stress.

This numerical result could be helpful for interpreting
geological structures such as faults. The thickness of the
damaged area surrounding a fault has been proposed to in-
crease with its tangential displacement [e.g. Vermilye and
Scholz , 1998], but this result is very controversial [see Evans,
1990]. Evans [1990] wrote that ”thickness-displacement re-
lationship may exist for some populations, but may vary
between populations depending on fault type, rock rheology
and environmental parameters”. Our model indicates that
the thickness of the damage zone surrounding a fault should
be larger in zones of low σ/σ0 values (or low strain rate) and
lower in zones with high σ/σ0 values (or high strain rate).
These results should be validated by field observations in
areas where the tectonic stress/strain regime is known, and
could explain the variability of damage zone thickness.

In our model, the event size distribution appears to de-
pends on time and on stress. For low stress values, the mean
size increases with time and the power-law distribution ap-
pears only when integrating over the whole simulation. For
larger stress, the power-law distribution is observed from
the beginning of the simulation and does not change as the
macroscopic failure approaches. The results for large stress
are similar to the creep experiments of Nechad et al. [2005b],
who did not observe any change of P (∆W, t) with time.
Amitrano et al. [2005] observed an increase with time of the
average energy of seismic events preceding a cliff collapse,
which was interpreted either as a decrease of β with time,
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or as a constant β-exponent for small energies, with an ex-
ponential falloff above some typical energy ∆Wc increasing
with time. A similar behavior has been observed during
a creep test on porous rocks with increasing stress steps
[Amitrano, 2005]. The size distribution of acoustic emis-
sions shows a transition between an exponential fall-off for
low stress to a pure power-law with decreasing β for larger
stress. In contrast, Guarino et al. [2002] observed an in-
crease of the β exponent as the stress increases during creep
test on artificial heterogeneous materials.

7. Conclusion

We propose a numerical model based on static fatigue
laws in order to model the time-dependent damage and de-
formation of rocks. A time-to-failure law, established exper-
imentally at the scale of a sample, is used to simulate the
behavior of each element of our finite element model. Elastic
interactions coupled with material heterogeneity lead to the
emergence of a macroscopic behavior that is richer than the
elementary one. In particular, we observe primary and ter-
tiary creep regimes associated respectively with a power-law
decay and increase of the rate of strain, damage event and
energy release. Our model also produces a power-law distri-
bution of damage event sizes, and damage localization along
shear bands. This model thus reproduces many properties
of rock creep, which were previously not modeled simulta-
neously.

Our approach thus appears to be an interesting and
promising alternative to the microscopic approach, dedi-
cated to the study of fracture propagation, and to the
macroscopic approach based on constitutive laws. It shows
that the complex behavior of creeping rocks observed at a
given scale may result from the interactions of elements at
a smaller scale.

In this paper, we have considered only the case of a
stress step (creep), but we could simulate any arbitrary
time-dependent loading, imposing either the applied stress,
strain, or strain rate. Note that our model has an elastic-
brittle behavior. Therefore the strain is entirely reversible;
removing the applied stress brings the strain back to zero. In
contrast, real rocks have some viscous irreversible deforma-
tion. We could modify the behavior of each element in our
model to take into account this effect, e.g., by integrating
permanent deformation steps associated with damage.
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Table 1. Mathematical symbols

Symbol Eq. or Description
section

α (19) Orientation relative to major stress
a, B (32, 1) Constants
A(α) (20) Characteristics of damage
b, b′ (3,4) Exponent of time-to-failure laws
β 4.2 Exponent of the energy pdf

C, C1, C2 (7) Cohesion, min and max initial values
CH20 (2) Water concentration

D0 = 0.1 (5) Constant damage parameter
Di(n), D (6) Damage of element i after n events

DSC (19) Damage correlogram
E0 = 50 GPa, (5) Young modulus (initial, average,
< E >, Ei,n (5) and for element i after n events)
ǫ, ǫc = 0.03 3 Strain, final strain

φ = 60o (7) Internal friction angle
K, Kc (1,2) Intensity factor, critical value

L (2) Crack length
λ, λc (19) Distance, correlation length

N = 640 (21) Number of elements in the model
n (5) Number of damage events

ν = 0.25 (3) Poisson coefficient
P (W, t) 4.2 Energy pdf at time t

pn, pǫ, pW (13-15) Exponents of damage, energy and
strain rate for primary creep

p′

N , p′

ǫ, p′

W (16-18) Exponents for tertiary creep
pi(n) (9) Fraction of consumed time-to-failure

q (2) Exponent of subcritical crack growth
r (19) Linear correlation coefficient
R (1) Gas constant
s (21) Avalanche size
σ (3) Mean major stress
σi (11) Major stress on element i

σ0, σ0,i (1,7) Strength, average and for element i
σ01

, σ02
(29) Min and max initial strength

σ1, σ2, σ3 (7) Major, intermediate and minor main stress
T (1) Temperature

t(n) (11) Time of nth damage event
ti(n) (11) Failure time of element i after n events

tf (σ, σ0) (3,4) Time-to-failure
tc (16) Time of macroscopic failure
tm Transition time, primary to tertiary creep
∆t (23) Average inter-event time

t0 = 1, t′0 = 1 (3,4) Characteristic time
V , V0 (1) Crack growth velocity

W (15) Cumulated elastic energy release
W0 (1) Activation energy
Wc Typical energy (fall off for large W )
∆W (25) Change of elastic energy

after a damage event
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Figure 1. Failure time (in sec) for laboratory creep tests
with a variety of loading conditions, realized by different
studies (1) [Scholz, 1972], (2) [Kranz, 1980], (3) [Kranz
et al., 1982], (4) [Baud and Meredith, 1997], (5) [Masuda,
2001]. The tests presented in the upper plot concern
different rock types: BG: Barre granite, WG: Westerly
granite, IG: Indiana granite, DS: Darley Dale sandstone.
The applied stress σ is normalized by the instantaneous
strength σ0 (estimated by the strength for short failure
times). For [Baud and Meredith, 1997], the tests were per-
formed at constant pore pressure Pp = 50 MPa and con-
fining pressure σ3 = 75 MPa. In this case, the legend in-
dicates the effective confining pressure σ′

3 = σ3−Pp = 25
MPa. The middle plot shows the impact of the confin-
ing pressure on the time-to-failure of Barre Granite. The
lower plot shows the impact of temperature and water
saturation. respectively.
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Figure 2. Typical temporal evolution of (a) strain (re-
moving the initial elastic strain), (b) number of damage
events, and (c) energy release, for two simulations with
σ/σ0 = 0.80, and using a power-law relation (4) with
b′=40 (thick gray line), or an exponential (3) (thin black
line) time-to-failure relation with b=40. Time is normal-
ized by the macroscopic failure time.
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Figure 3. Rate of damage events (a,d), strain (b,e), and
energy (c,f) for different values of the applied stress σ/σ0

(see caption), using the exponential time-to-failure law
(3) with b=40, and using expression (12) for the time-
to-failure of each element as a function of damage, stress
and strength. The upper and lower plots show the same
data with different axes, to illustrate the power-law de-
cay during primary creep and the power-law acceleration
during tertiary creep. In each plot the dashed black line
represents a power-law relation with exponent of 1 for
reference.
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Table 2. Results of the fits for both the exponential (3) and
the power law (4) time-to-failure relations, using data from
the literature. We have estimated the parameters log(t0) or
log(t′

0
) and b or b

′ using a linear regression in semilog or loglog
plots for the exponential and power-law relations respectively.
r is the correlation coefficient, and Np the number of creep
tests.

Ref.a Rock Type T dry/ σ3 σ0 Np Exponential fit (3) Power-law fit (4)
◦C wet MPa MPa b log(t0) r b′ log(t′0) r

S72b quartz, c-axis 25 wet 0 2070 62 28. 32. 0.82 24. 4.4 0.82
S72c quartz, a-axis 25 wet 0 1950 73. 82. 73. 5.7
K80 Barre granite room dry 0.1 9 48. 47. 0.83 40. 0.2 0.84
K80 Barre granite room dry 53 8 55. 58. 0.97 48. 3.4 0.97
K80 Barre granite room dry 100 5 88. 88. 0.96 79. 0.7 0.96
K80 Barre granite room dry 198 3 138. 134. 0.97 123. 3.8 0.97
K82 Barre granite 24 dry 100 5 78. 82. 0.96 73. 3.9 0.97
K82 Barre granite 200 dry 100 9 69. 69. 0.93 60. 0.9 0.92
K82 Westerly granite 200 dry 100 4 79. 83. 0.98 74. 4.9 0.98
K82 Westerly granite 200 wet 100 4 55. 60. 0.99 51. 4.8 0.99
M91 Indiana granite room dry 0 8 82. 83. 0.93 72. 0.8 0.92
BM97 Darley Dale sandstone room dry 30 3 29. 34. > .99 24. 5.7 > .99

a References: BM97: Baud and Meredith [1997]; M91 : Masuda [2001]; K80: Kranz [1980]; K82: Kranz et al. [1982]; S72: Scholz

[1972].
b Data from Figure 1 of [Scholz, 1972], for single-crystal quartz loaded along the c-axis direction
c Data from Figure 3 of [Scholz, 1972], for single-crystal quartz loaded along the a-axis direction. Only the average time-to-failure

for 3 values of the applied stress (σ=1820, 1880 an 1920 MPa) were used for the fit.
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Figure 4. Energy distribution for two simulations using
an exponential time-to-failure law with b = 40, and with
time-to-failure decreasing with damage according to (12).
Each plot corresponds to different values of the applied
stress (a) σ/σ0 = 0.25 and (b) σ/σ0 = 0.95. Each colored
line with dots corresponds to a different time window.
Each window has the same number of events N/10, where
the total number of events in each simulation is N =
25283 for σ/σ0 = 0.25 and N = 972 for σ/σ0 = 0.95.
The normalized time t/tc of the center of each window is
given in the caption. The thick black line is the energy
distribution for the whole simulation.
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Figure 5. Typical energy release per damage event as a
function of the time before failure, for different values of
the applied stress (see value of σ/σ0 in the caption), using
the exponential time-to-failure law (3) with b = 40. We
have estimated the median energy of damage events for
a sliding window of 40 events. We have multiplied the
median energy by an arbitrary factor for plotting pur-
poses, the median energy at a given time t/tc is almost
independent of the applied stress. The dashed black line
is a power-law with an exponent of 0.3 for reference.
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Figure 6. Cumulative energy distribution, integrated
over all times, for simulations with an exponential time-
to-failure law with b = 40, and with time-to-failure de-
creasing with damage according to (12). Each curve cor-
responds to different values of the applied stress σ/σ0 (see
caption). The dashed line shows a power-law distribution
with exponent β = 1 for reference.
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Figure 7. Damage state Di,n defined by (6) at the end
of the simulation, for different stress values, using the
power-law time-to-failure relation (4) with b′=40.
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Figure 8. DSC as a function of the distance, λ, in
the directions parallel (a), αband, and perpendicular (b),
αband+π/2, to the damage band for successive time steps,
with a step of N/10 between 2 curves, N being the total
number of events. The legend indicates the correspond-
ing normalized time t/tc.
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Figure 9. Coefficient of anisotropy, A(α) defined in (20),
as a function of the direction α, for successive time steps,
with a step of N/10 between 2 curves, N being the total
number of event. The legend indicates the corresponding
value of t/tc. The applied stress is σ/σ0 = 0.75. The
time-to-failure is given by expression (4) with b′=40.
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